
AIT 2009

Requirements Trade-off Analysis for Test-First
Development

Nien-Lin Hsueh, Kee-Wun Lee, Shi-Chuen Hwang

Feng Chia University
No.100, Wunhua Rd., Situn District, Taichung, Taiwan (R.O.C.)

{nlhsueh,m9601321,schwang}@fcu.edu.tw

Abstract—Test-first development requires
tests before implementation and provides fast
feedback after implementation. However, this
development method emphasizes functional
testing rather than non-functional testing.
Furthermore, it does not provide any
approach to handle requirements trade-off
problems even requirements conflicts are
inevitable during software development. Thus,
in this research we design a Requirement
Trade-off Analysis Framework (RTAF) to
automatically explore conflicts between
requirements. This framework allows
developers to define functional and non-
functional requirements, set the properties of
each requirement, and specify the critical
design point of the system. In our approach, a
critical design point may be implemented by
several designs. By evaluating the satisfaction
degrees of all requirements with respective to
the possible designs, RTAF will determine the
best design according to the critical method of
different designs. This research will introduce
a process to apply RTAF. A sorting example is
developed to describe our framework and
process. This approach is implemented on the
basis of JUnit and JUnitPerf.

Keywords—Test-first development,
requirements conflicts, trade-off analysis

1. INTRODUCTION

Requirements play a crucial role in software
development process. Requirements consist of
functional (e.g., login, logout, and read file
function) and non-functional requirements (e.g.,
performance, reliability, and maintainability).
Well-defined requirements will lead to the
success of a project. Failed to meet non-
functional requirements may cause a system
unusable. It is not easy to satisfy all non-
functional requirements without affecting other
functional requirements (FR) or non-functional
requirements (NFR). When a non-functional

requirement is satisfied, it may impact the others
(e.g., a system may perform quickly but exhaust a
lot of memories). Time-space trade-off occurred
when a system is required to have the best
performance and using the least space. Trade-off
is a spot where enhancing one attributes
decreases the others [9]. Thus, Best performance
can be achieved but much space is demanded.

To achieve the greatest performance, different
code designs may be required. Much of the
quality aspects of a system or non-functional
requirements are determined during design phase
[6]. Therefore, programmers have to make
different code design and test the performance of
each design in order to satisfy the customers’
expectations [17].

Test-first development is part of agile software
development approaches. In test-first
development, test cases are implemented before
the coding phase. By doing test first,
programmers will think about what to do before
thinking about how to do it [4]. This development
method improves software quality and helps
programmers work faster. However, some
problems were found on this development
method. First, this approach emphasizes
functional testing rather than non-functional
testing [7, 13, 1]. Second, this approach does not
handle requirements trade-off problems.
Therefore, the interaction between functional
requirements and non-functional requirements
are difficult to identify in test-first development.
Furthermore, conflicts between requirements
were identified manually.

To resolve these problems, we propose an
object-oriented framework – called Requirement
Trade-off Analysis Framework (RTAF) – which
utilizes the automation capability of JUnit and
JUnitPerf, to investigate the trade-offs between
requirements in an automatic way. RTAF obtains
trade-off decision in the design phase. Our
framework provides the following functionality:

• allowing developers to define system
requirements and their satisfaction
degrees

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

• providing a framework where developers
can define different designs for evaluating
the satisfaction degrees of non-functional
requirements

• helping the developers to identify conflicts
between non-functional requirements and
designs

Our approach will use performance between
time and load to illustrate the requirements trade-
off analysis. The approach is iterative until the
final decision is made.

The rest of this paper is organized as follows:
section 2 provides the background of trade-off
analysis, conflict, and Test-first Development.
Section 3 introduces the proposed RTAF and its
process. Section 4 provides a case study to
demonstrate our approach. Section 5 is related
work. Finally, section 6 concludes the thesis with
summary and future work.

2. REQUIREMENTS TRADE-OFF
ANALYSIS

2.1. Requirements Conflicts
User requirements usually conflict with each

other. Conflicts are inevitable in requirements
elicitation. Handling conflicts can improve
productivity, satisfaction, quality and also
understanding of the requirements.

Conflicts occur when an increase in the degree
of satisfaction of a requirement cause a decrease
in the degree of satisfaction of another
requirements [19]. According to Yen and Tiao
[19], conflicts can be divided into two types:
completely conflicting and partially conflicting
(Fig. 1). Two conflicting requirements are said to
be completely conflicting if an increase of the
satisfaction degree of one requirement always
decreases the satisfaction degree of other
requirements; two conflicting requirements are
said to be partially conflicting if an increase of
the satisfaction degree of one requirement affect
the other requirements in some circumstance. For
example, space and time are said to be completely
conflicting because a system with good
performance always exhausts much space.
Security and space are partially conflicting
because not all systems with high security need
much memory.

Fig. 1 Conflicting Imprecise Requirements [19]

2.2 Trade-off Analysis
Seems that conflicts are ineluctable in

requirement elicitation, trade-off among
requirements has become a very challenging
issue. It is important to explore trade-offs
between conflicting requirements. There are
various approaches to trade-off analysis in the
literature.

According to Kazman et al., all designs
involve trade-offs [10]. If system attributes are
not analyzed, trade-offs in the architecture may
not be realized. Making good enough trade-offs
between quality attributes is a crucial issue on
quality assurance. Hence, researchers were
working so hard to find out requirements trade-
off solutions.

Poort and With develop a method called Non-
Functional Decomposition (NFD) to resolve
conflicts through non-functional decomposition
[14]. This model splits requirements into primary
and supplementary requirement to optimize the
system structure by applying process, structural
or functional strategies.

Yang et al. postpones trade-off analysis until
runtime since they believe that information
obtained during runtime is more accurate than the
estimation at design phase [18]. They also found
that it is very hard and impossible to make trade-
off between designs during design phase.
However, performance issues should be dealt
earlier during development process, otherwise
cost will increase and problems are hard to fix [7,
3, 9, 15, 10].

Kazman et al. proposed a method to resolve
trade-offs in the software architecture during
design phase [10]. They aimed in illuminating
risks in the architecture designs. We believe
resolve design trade-off problems earlier in the
development process will assure the software
product quality.

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

2.3 Test-first Development
Test-first Development improves code quality

and productivity. It is a software development
method consisting of short iterations where new
test cases covering the desired improvements or
new functions. Using this method, tests have to
be prepared before coding to facilitate rapid
feedback changes. Story cards, task cards and test
cards are used to represent requirements in Test-
first Development [16].

In conventional development method like
Waterfall model (Fig. 2), testing is done after
coding phase. Waterfall model is a sequential
development process. Programmers have to
develop the system from on phase to another
phase in a purely sequential manner. Thus, when
conflicts occur, it is infeasible to change the
design.

Fig. 2 Waterfall model.

Fig. 3 Test-first development process.

Test-first Development is an iterated
development process (Fig. 3). Hence,
programmers may refactor the code to
accommodate changes. One of the main key
features of Test-first Development is that
developers are required to create automated unit
tests before writing the code. Programmers
running the tests rapidly throughout the
developing process to confirm the correct
behavior of the code as programmers evolve and
refactor the code.

RTAF aims at resolve trade-offs among
requirements. Changes have to be made during
the developing process. Thus, our framework is
conducted based on Test-first Development. In
this manner, trade-off will be revealed earlier in
coding phase Moreover, different designs can be
created and conflicts can be solved on time. This
will guarantee the quality of the system and
reduce the development cost.

3. REQUIREMENTS TRADE-OFF
ANALYSIS FRAMEWORK (RTAF)

This section will introduce the proposed
Requirements Trade-off Analysis Framework
(RTAF) and the trade-off analysis process in
Test-first Development.

3.1. Requirements Taxonomy
Fig. 4 shows the taxonomy of the requirements.

The requirements taxonomy helps us realize the
way to represent the requirements and the
relationships among requirement, story, task and
test.

It is important to categorize the requirements.
According to the requirements taxonomy,
requirements are divided into Functional and
Non-functional Requirements. Non-functional
requirements are quality attributes: reliability,
performance and security. Other quality
requirements such as portability, maintainability,
and reusability may also adherence to standards
and guidelines to meet the system quality metrics.

Fig. 4 Requirements Taxonomy.

Agile method like Extreme Programming

expresses requirements as story or scenario [16].
Each story can be decomposed in to tasks. Tasks
represent the discrete features of the system and
unit test can then be designed for each task. Our

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

framework exploits JUnit for unit test and
JUnitPerf for performance testing.

Our trade-off analysis process is developed
based on the requirements taxonomy depicts in
Fig. 4. The details of the trade-off analysis
process are elaborated on section 3.3.

Relationships between FR, NFR, design, and
satisfaction degree are illustrated in Fig. 5. The
upper part lists the functional and non-functional
requirements and the dependence relationship
between them. Usually, non-functional
requirements are dependent on some functional
requirements (e.g., NFR11 depends on FR1);
however, some of the non-functional are
independent (e.g., NFRij). The independent non-
functional requirements are system performance
requirements, such as system performance,
reliability and maintainability. Each non-
functional requirement will be given a
satisfaction degree according to users needs.

Fig. 5 Relationships between FR, NFR, design
and satisfaction degree.

During system development process,
developers propose the first design (design1). In
design1, NFR11 may be satisfied with a high
degree, but NFR12 is satisfied with low degree.
The developer then tries another design, said
design2, to increase the satisfaction degree of
NFR12. When design2 satisfies both NFR11 and
NFR12 with a high degree, it might impact the
other requirements (e.g., NFR22 and NFRij).
Without any indication, the developer may think
“design2 is better than design1”. However, some
implicit conflicts might be occurred between
other requirements.

In short, each NFR will be given a satisfaction
degree and different designs is generated to
approaching the given satisfaction degree.
Implicit and explicit conflicts among non-
functional requirements might occur. Our
framework can help developers identify the
conflicts among requirements and designs
whenever a new design is proposed.

3.2. Requirements Trade-off Analysis
Framework

The architecture of our framework is shown in
Fig. 6. In our framework, all requirements
comprise requirement id (rid), description, owner,
and priority. FR and NFR both extend an abstract
class – Requirement. Each FR object consists of:

• rid – requirement’s id
• description – requirement’s description
• priority – priority of the requirement
• owner – requirement’s related stakeholder
• input – requirement input description
• output – requirement output description

Functional and non-functional requirements
are tightly correlated. It is hard to state non-
functional requirements separately from the
functional requirements [16]. Thus, each NFR is
related to one or more FRs. As illustrated in Fig 6,
there is a relationship between FR and NFR.
Besides having the same attributes as FR, NFR
has a reference and some particular attributes:

• sd – satisfaction degree of NFR (a double
type number between 0 and 1)

• type – NFR type (e.g., time, load, space)
• unit – unit of the NFR type (e.g., unit for

time is ms, unit for space is byte)
• value – value of the expected result (e.g.,

time less than 30 ms, value=30)

Fig. 6 Architecture of RTAF

In our framework, all requirements have to be

modeled as FR or NFR objects. All Designed
classes with critical method have to extend
CriticalDesignPoint and override execute(). After
modeling all requirements and setting the
CriticalDesignPoint, the RTAAnalyzer will
analyse conflicts between designs and
requirements according to the FR and NFR

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

attributes, and also the critical methods of
different designs.

The analyze() in RTAAnalyzer is the core of
RTAF. Conflicts analysis is perform in this
method. An extract of source code from
RTAAnalyzer.analyze() is shown in Fig. 7. Test
results (unit test and performance test result)
must be obtained before analyzing process. In
Test-first development, programmers will write
tests for system test. However, using RTAF,
programmers do not have to write extra testing
code for trade-off analysis. Unit test and
performance test are included in our framework.

3. Test. In RTAF, test cases are generated by the
framework based on the requirements. The tests
content are written by the tester according to the
test case descriptions. Fig. 7 An extract of RTAAnalyzer.analyze().

Performance test (JUnitperf) is a collection of

JUnit test decorator. Thus, no matter which
performance test (timeTest() or loadTest()) is
invoked, unit test will be performed first, then
followed by performance test. In RTAF, Unit test
will only test the overridden execute() in different
designs; JUnitPerf tests only time and load.
When timeTest() is invoked, system elapsed time
will be measured; when loadTest() is invoked,
elapsed time of simulated number of concurrent
users and iterations will be measured. The result
of performance test will be recorded in a text file.

The getBestDesign() will show the best design
according to the expected results and results
generated by performance test. Design’s
satisfaction degree approximate the most to the
expected satisfaction degree will be chosen as the
best design. If all designs’ satisfaction degrees
are higher that the expected satisfaction degrees,
the design with the highest satisfaction degree
will be chosen as the best one.

In analyzeConflict(), satisfaction degree of
each NFR of different designs will be measured.
Conflicts between two NFRs occur when an
increase in the satisfaction degree of one NFR
decreases the satisfaction degree of the other, and

vice versa. If conflicts between two NFRs
occurred in different designs, we assumed that
the designs are conflict to each other. This means
that each design can only satisfy one NFR.

3.3 The Process Using RTAF
Fig. 8 introduces the trade-off analysis process.

The process consists of the following six phases:

1. System analysis. Requirements gathered from
the users will be expressed as stories and
recorded in story cards. Each story will be broken
down into tasks. Tasks are the basis of
implementation. Then, programmer have to
model each task’s functional requirements as a
FR object. Besides, each non-functional
requirement will be modelled as a NFR object
and each NFR’s satisfaction degree will be set
according to stakeholders’ needs.

2. Initial design. Simple design is made to meet
the current requirements. Programmers choose
the class to implement each requirement.

4. Design. This phase includes architecture and
detailed designs. First, system architecture
diagram will be created by the system analysts.
Next, detailed design will be constructed using
UML diagrams such as class diagrams. The class
diagrams will be generated by the analysts based
on the architecture design. The programmers
have to determine the Critical Design Point in
this phase and model the critical class as a child
class of the CriticalDesignPoint class. Critical
design point is the part of the system that affects
the whole system performance the most.
Programmers generate different designs, and test
each design’s critical point to obtain the best
performance.

5. Code. Programmers implement the designs
based on the task cards and class templates
generated.

6. Trade-off analysis. When all tests passed,
RTAF will analyses trade-offs of critical design
point according to the test results. Trade-offs or
conflicts between requirements and different
designs will be revealed. Moreover, the best
design will be shown. RTAF generates best

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

design based on the satisfaction degrees and the
priority of the requirements. Design with the
closest satisfaction degree to the expected
satisfaction degree and the highest priority will
be chosen as the best result. Programmers can
choose the suitable design according to the
results generated in trade-off analysis phase. If
the results do not meet the stakeholders’
satisfaction degree, the programmers or system
analysts have to make changes to the design
according to the requirements and return to the
System Analysis phase.

7. Deploy. Finally, if the best design has been
decided, programmers will deploy the selected
design to the system.

Fig. 8 Trade-off analysis process for test-first
development.

4. A CASE STUDY

In this section, we present a simple case study
– the implementation of Student Grading System
(SGS), to demonstrate the way to develop a
subsystem using RTAF. The requirements
include:

- sort more than 2000 data.
- read data from text file.
- sort 2000 data should be done within 30ms.
- allow 10 users access at the same time, time

should not exceed 100ms each.

Phase 1: System analysis.
In this phase, we divided requirements analysis

process into 3 steps:
1. Gather requirement.

2. Model each task’s functional requirements
as a FR object in RTAF.

3. Model each task’s non-functional
requirement as a NFR object and set each
NFR’s satisfaction degree in RTAF.

Step 1: Gather requirements

Story cards are used to represents the system
requirements in Test-first Development. The
story of the case study is presented as a story card
in Fig. 9.

Fig. 9 Story card for Student Grading System.

Fig. 10 Task Cards for Student Grading System.

The requirements in the story card will be

decomposed into tasks. Each task is the principle
unit of implementation [16]. Some of the tasks
may concern about the quality attributes like
performance and security. Extreme Programming
only included task description in the task card.
Considering that non-functional requirements are
related to the specific functions of the system, we
enclosed the non-functional requirements in the
task card. This can be seen from Task 1 and Task
3 in Fig. 10. In our approach, the stakeholders are
required to state the expected result and their
satisfaction degree for the later conflict analysis.

Step 2: Model each task’s functional
requirements as a FR object in RTAF

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

The functional requirements gathered from the
story of Student Grading System are sort, read
text file, and multiple access. The relationship
among these requirements is represented as an
object diagram in Fig. 11. All requirements are
treated as object. The ReqReadFile reads a text
file and output an unsorted array to the ReqSort.
The ReqSort will output an array sorted in an
incremental order. This application allows
multiple users access at the same time.

Fig. 11 Object Diagram of the Student Grading

System.

In RTAF, each task’s functional requirement
must be modelled as a FR object. Doing so will
provide useful information for trade-off analysis
in later phase.

Fig 12 demonstrates the FR objects of the
Student Grading System. The attributes of
requirement sort in row one are rid, description,
priority and owner. The methods setInput and
setOutput are used to set input and output
description respectively.

Step 3: Model each non-functional

requirement as a NFR object and set each
NFR’s satisfaction degree in RTAF

According to the task cards in Fig. 10, Task 1
and Task 3 contain non-functional requirement.

Each non-functional requirement has to model as
a NFR object. This can be demonstrated as Fig.
13. The attributes set to the NFR objects in Fig.
13 are reference, description, type, and priority.
Priority must be provided to enable programmers
make the final decision.

Fig. 13 Model non-functional requirement as
object.

After modelled the non-functional

requirements as NFR object, each satisfaction
degree of the NFR object has to be set. The result
of JUnit test is either pass or fail. However,
performance and the other NFRs test can not be
justified by only right or wrong. According to
IEEE-1061, 1998 [8], quality means “the degree
to which software possesses a desired
combination of quality attributes.” Thus, our
approach allows users to set expected response
value and satisfaction degree.

Fig. 14 Set Satisfaction Degrees.

The satisfaction degree of each NFR is set as

Fig. 14. It is a must to set the satisfaction degree
because the result of trade-off analysis is relying
on the sd. The arguments of setSF are the
expected response value and satisfaction degree
(sd). The first line of Fig. 14 indicates the
satisfaction degree of sort is 0.8 if the execution
time is 30ms.

Fig. 12 FR objects in RTAF.

AIT 2009

In our approach, users have to insert two data
for each NFR object in order to obtain the linear
relationship of the value and the satisfaction
degree. The linear relationship between value
and satisfaction degree of the sortTime in Fig. 14
can be demonstrated in Fig. 15. In RTAF, the
satisfaction degree is limited between 0 and 1. If
the satisfaction degree approaching 1.0 indicates
that the program achieves the greatest
performance. We wish that our future research
will adapt the fuzzy analysis for our framework.
This will provide more precise analysis result for
trade-off analysis.

Fig. 15 Linear Relationship between Response
Time and Satisfaction Degree.

Phase 2: Initial Design
In Initial Design phase, a simple design or a

draft design has to be made for creating the class
templates and test templates. Therefore,
programmers have to choose the class to
implement each requirement. Table 1 reveals the
unimplemented relationships between classes
and requirements. The requirement rSort will be
implemented by sort() in the Sort class while the
rReadFile will be implemented by readFile() in
the FileProcessor class. In RTAF, this can be
realized as Fig. 16(a).

TABLE 1

UNIMPLEMENTED RELATIONSHIPS BETWEEN
CLASSES AND REQUIREMENTS.

Class Sort FileProcessor UserAccess
Requirement Method
rSort sort()
rReadFile readFile()
rMulAccess mulAccess()

The method implement in Fig. 16(a) contains
two arguments: FR object and class method
name. According to Table 1, the requirement
rSort will be realized in the sort() method of the
Sort class. Hence, the second argument
“Sort.sort” is set. The “Sort” before the “.”
represents the class name; the “sort” after the “.”
symbolize the method.

Fig. 16 (a) Implement the requirements to the
Related Class in RTAF, (b) Implement the NFR

objects.

Fig. 16(b) shows that the RTAF implement
the NFR objects. After implementing the FR and
NFR objects, class and test templates will be
generated. Programmers can specify the package
for the program. This can be done by invoking
addDesign(“designName”). For example, if the
addDesign(“Design 1”) is implemented, all the
class templates will be generated in the Design 1
package. However, unit test and performance
test templates will always created in the Tests
package.

Fig. 17 Test Description.

Phase 3: Test

In our framework, JUnit is used for functional
testing and JUnitPerf is used for non-functional

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

testing. In this phase, programmers implement
test cases using the test templates created by
RTAF based on the test description cards. Every
task in the task cards generates one or more unit
test. Test descriptions are illustrated in Fig. 17.

Phase 4: Design

This phase includes three steps: architecture
design, detailed design, and set critical design
point.

Step 1: Architecture Design

Architecture design is concerned with the
high-level software structures, such as
subsystems, packages, and tasks [5]. There are
two kinds of architecture design – logical and
physical. Logical architecture refers to the
organization of classes and data types at design
time; physical architecture refers to the system
element that occurs at runtime. We use domain
diagram to demonstrate the logical architecture
of Student Grading System (Fig.18).

Fig. 18 Architecture design of Student Grading
System.

Step 2: Detailed Design
According to Poort and With [6], conflicts

among NFR occur when the solution is applied
to a subsystem. This can be solved by separating
the subsystem, and applying different solutions
to the respective parts. Analysts or programmers
have to find out critical design point according
to the detailed design. Detailed design specifies
the details of data members and function
members within individual classes [5]. Fig. 19
illustrates the detailed design of the Student
Grading System.

Different detail design is required for the
trade-off analysis. To generate variety of designs
to improve the performance, we provide a
design guideline as follow.

• Intuitive design using array or variable
• Design using Data structure like linked-list
• Design using algorithm
• Using design pattern

Fig. 19 Detailed Design of Student Grading
System.

Step 3: Set critical design point
In this phase, the programmers have to set the

Critical Design Point (CDP) for the trade-off
analysis. After the architecture and detailed
designs are provided, the CDP has to be set.
CDP affects the most system performance. As
such, the critical part of the system will be
isolated and can be optimized by applying
variety of designs. The least time spent by the
CDP, the better satisfaction degree is obtained.

TABLE 2

MARKED CDP.
Class Sort FileProcessor UserAccess

Requirement Method
rSort sort()
rReadFile readFile()
rMulAccess mulAccess()

Programmers can find out CDP according to
the table that implements the requirements (e.g.,
Table 1). If CDP is found, the method can be
marked. We assume sort() will affect the system
performance. Thus, sort() is marked as the CDP
(Table 2). Then, model the critical class as a
child class of the CDP class and override the
execute() as Fig. 20. The content of the execute()
should be the CDP method.

Fig. 20 Model the Critical Class as a Child Class
of the CDP class

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

Phase 5: Code
 Programmers start coding using the

class templates created by RTAF in the System
Analysis phase. Class templates created by
RTAF is according to the requirements set by
the analysts. Programmers can change the
parameters or functions return type according to
their needs.

Phase 6: Trade-off Analysis

When programmers finish coding and testing,
the expected satisfaction degree for each NFR
has to be set. This can be seen from Fig. 21. The
setExpected pass two arguments: NFR type and
expected satisfaction degree of the NFR type.

Fig. 21 Set expected satisfaction degree of each
NFR.

Besides setting the satisfaction degree,
programmers have to set the designs that are
going to be analyzed. In our case study, we
assume sort() as the CDP. We have made two
designs (BubbleSort and QuickSort) to analyze
the satisfaction degree of time and load. As
shown in Fig. 22, two designs
(StudentGradingSystem.BubbleSort() and
StudentGradingSystem.QuickSort()) is added.
The StudentGradingSystem is the package where
BubbleSort class is located.

Fig. 22 Set Designs for Trade-off Analysis.

The analyze() in RTAAnalyzer will analyze
conflicts among different designs according to
the CDP and the expected satisfaction degrees
set. The trade-off analysis result will be printed
as Fig. 23. The expected satisfaction degree of
each NFR will be shown in the first line. Line 2
and Line 3 of Fig. 23 show the satisfaction
degree results of each design.

The Satisfaction Degree Information shows if
the results achieve the satisfaction degree of
each NFR. In Fig. 23, the result of QuickSort
(time: 1.00; load: 0.92) and BubbleSort (time:
0.92; load: 0.88) reveal that both design achieve

the expected satisfaction degree (time: 0.80; load:
0.70).

In our example, time and load of sort() is
tested. Result in Fig. 23 reveals that no conflicts
occur. In RTAF, if one satisfaction degree
increase while the other decrease, and vice versa,
we consider conflict occur. If conflicts occur, it
will be revealed as Fig. 24. Time for QuickSort
is 1.00 while time for BubbleSort decrease 0.08
(0.92); load for QuickSort is 0.92 while load for
BubbleSort increase 0.01 (0.93). Satisfaction
degree for time decrease while increase for load.
Apparently, conflicts occurred, they are: 1)
conflict among NFRs (time conflicts with load),
and 2) conflict among design ([QuickSort]
conflicts with [BubbleSort]).

Fig. 23 Results with no Conflicts.

Fig. 24 Results with Conflicts.

Besides showing the conflicts among NFRs
and designs, priority of each NFR and the best
design will be shown to help programmers in
decision making. The lowest part of Fig. 23 and
Fig. 24 show that [QuickSort] is the best design
because the satisfaction degree of [QuickSort] is
the highest.

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

2009 International Conference on Advanced Information Technologies (AIT)

The sequence of trade-off analysis in RTAF
can be demonstrated in Fig. 25. First, model
functional requirements and non-functional
requirements as FR and NFR objects. Next, set
critical design point and override execute().
RTAAnalyzer will analyze conflicts based on the
FR attributes and the expected result set in NFR.
Finally, conflicts results and the best design will
be shown.

If the programmers do not satisfy with the
design, they can back to the System Analysis
phase, review stakeholders’ requirements and
make new design. This process can iterate until
the most satisfy design is found. After certain
iteration, programmers can determine which
design provides the best performance and is
appropriate to be used in the developing system.

Phase 7: Deploy

If the programmers have found the most
suitable design for the system, the final step is to
deploy the chosen design to the system.

Fig. 25 Sequence Diagram of Trade-off Analysis in RTAF

5. RELATED WORK

Requirement Trade-off Analysis technique
published by Lee and Kuo analyzes the conflicts
of a system in mathematical way [11]. This
approach extended hierarchical aggregation
structure with fuzzy and/or operators to facilitate
requirements. Furthermore, they provide a
requirements classification scheme to classify
requirements.

Poort and With provided a Non-Functional

Decomposition (NFD) framework that provides a
model to resolve conflicts of the requirement [14].
They believe that functional requirements are
never conflicting; conflicts might emerge in the
non-functional requirements. The authors split
requirements into primary and supplementary
requirements. Relations between requirements
are created. The NFD process isolates conflicting
requirements. The isolated requirements will be

AIT 2009

optimized by applying process, structural or
functional solution strategies.

Another trade-off analysis approach was
presented by Yang et al [18]. To guarantee the
quality of the system at runtime, their approach
resolves trade-off solution according to the
runtime context. They believe runtime
information could only be acquired during the
execution. It is not always possible to acquire
desire quality during design phase. Thus the
trade-off decision will be done during system
execution.

The comparison results of those related works
and RTAF are shown in Table 3. Researches
done by Lee and Kuo, Poort and With identified
conflicts manually. Although Yang et al resolve

non-functional requirement conflicts
automatically; the trade-off solution is done
during system execution.

Trade-off analysis method proposed by
Kazman et al. resolve trade-offs in the software
architecture during design phase [10]. They
aimed in detecting potential risk within the
system architecture. The analysis process is done
step by step manually.

Obviously, there is a lack of automatic trade-
off analysis in practice. Our framework, RTAF,
shows trade-off automatically during design
phase. This will help developers resolve conflicts
problems earlier during development process and
improve project success rate.

TABLE 3

COMPARISON OF RELATED WORKS

 Resolve trade-
off manually

Resolve trade-off
automatically

Trade-off
during design

Trade-off during
execution

Lee & Kuo [11]

Poort & With [14]

Yang et al [18]

Kazman et al. [10]

RTAF

6. CONCLUSIONS

Our Requirement Trade-off Analysis
framework (RTAF) automatically investigates
trade-off among requirements during design
phase in Test-first Development. In RTAF, trade-
off among each non-functional requirements and
different designs will be shown. However, the
final decision has to be made by the designers.

Our research concern about performance
because JUnitPerf is the only performance tool
that exist for time test. Our envision is that the
other NFR testing components like security and
reliability can be invented and be used in our
framework.

There are two main restriction of our proposed
framework. First, our approach is not applicable
to all designs. This framework is best used for
system with detail design. With detail design, the
programmer is able to determine the critical
design point. Our approach relies on the critical
design point to resolve trade-off problem

Second, RTAF is not applicable to test

frameworks. A framework consists of a large
number of functions. There might be a lot of
critical design points among these functions.
RTAF can only analyse trade-off of one critical
design point.

In future research, we wish our framework can
be used to test performance of different design
patterns. Furthermore, we wish that fuzzy logic
can be adapted to our conflict analysis instead of
the linear calculation.

ACKNOWLEDGMENT

This work was supported by the National
Science Council, Taiwan, under Contract No.
NSC97-2218-E-035-004.

REFERENCES

[1] Andrea, Jennitta, "Envisioning the Next-
Generation of Functional Testing Tools,"

2009 International Conference on Advanced Information Technologies (AIT)

AIT 2009

Software, IEEE, vol.24, no.3, pp.58-66,
May-June 2007.

[2] Astels, David. Test-driven Deveopment: A
Practical Guide, Chapter 3, 2003.

[3] Chung, L., B. A. Nixon, E. Yu, and J.
Mylopoulos, Non-Functional Requirements
In Software Engineering, Kluwer
Academic Publishers, Dordrecht, The
Netherlands, 2000.

[4] Decker, B.; Ras, E.; Rech, J.; Jaubert, P.;
Rieth, M., "Wiki-Based Stakeholder
Participation in Requirements Engineering,"
Software, IEEE, vol.24, no.2, pp.28-35,
March-April 2007.

[5] Douglass, B. P., Real Time UML Third
Edition: Advances in the UML for Real-
Time Systems. Addison Wesley Publishing
Company, 2004.

[6] Gross, D. and E.S.K. Yu, From non-
functional requirements to design through
patterns, Requir. Eng. 6 (2001) (1), pp. 18–
36.

[7] Ho, C. W.; Johnson, M.J.; Williams, L.;
Maximilien, E.M., "On agile performance
requirements specification and testing,"
Agile Conference, 2006, vol., no., pp. 6 pp.-,
23-28 July 2006.

[8] "IEEE standard for a software quality
metrics methodology," IEEE Std 1061-1998,
31 Dec 1998.

[9] Kassab, M.; Daneva, M.; Ormandjieva, O.,
"Scope Management of Non-Functional
Requirements," Software Engineering and
Advanced Applications, 2007, pp.409-417,
28-31 Aug. 2007.

[10] Kazman, R.; Barbacci, M.; Klein, M.;
Jeromy Carriere, S.; Woods, S.G.,
"Experience with performing architecture
tradeoff analysis," Software Engineering,
1999. Proceedings of the 1999 International
Conference, pp.54-63, 22-22 May 1999.

[11] Lee, J.; Kuo, J. Y., "New approach to
requirements trade-off analysis for complex
systems," Knowledge and Data Engineering,
IEEE Transactions, vol.10, no.4, pp.551-562,
Jul/Aug 1998.

[12] Metsker. S. J. and Wake W.C., Design
Patterns in Java, Addison-Wesley, Boston,
2006.

[13] Paetsch, F.; Eberlein, A.; Maurer, F.,
"Requirements engineering and agile
software development," Enabling
Technologies: Infrastructure for
Collaborative Enterprises, 2003. WET ICE
2003. Proceedings. Twelfth IEEE
International Workshops, pp. 308-313, 9-11
June 2003.

[14] Poort, E.R.; de With, P.H.N., "Resolving
requirement conflicts through non-
functional decomposition," Software
Architecture, 2004. WICSA 2004.
Proceedings. Fourth Working IEEE/IFIP
Conference, pp. 145-154, 12-15 June 2004.

[15] Smith C. U. and Williams, L. G..,
Performance Solutions: A Practical Guide
to Creating Responsive, Scalable Software,
Addison-Wesley, Boston, MA, 2004.

[16] Sommerville, I. Software Engineering, 8th
ed, 2007.

[17] Tate, B., Clark, M., Lee, B., and Linskey, P.,
Bitter EJB, Manning, 2003.

[18] Yang, J.; Huang, G.; Zhu, W.; Cui, X.; Mai,
H., "Quality attribute tradeoff through
adaptive architectures at runtime," The
Journal of Systems and Software (2008).

[19] Yen, J.; Tiao, W.A., "A systematic tradeoff
analysis for conflicting imprecise
requirements," Requirements Engineering,
1997., Proceedings of the Third IEEE
International Symposium, pp.87-96, 6-10,
Jan 1997.

2009 International Conference on Advanced Information Technologies (AIT)

