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Abstract— Linear discriminant analysis 
(LDA) has played an important role for 
dimension reduction in patter recognition 
field. Basically, LDA has three deficiencies 
in dealing with classification problems. 
First, LDA is well-suited only for normally 
distributed data. Second, the number of 
features can be extracted are limited by 
the rank of between-class scatter matrix. 
Third, the singularity problem arises when 
dealing with high-dimensional data with 
small training samples. Nonparametric 
dimension reduction method, such as 
nonparametric discriminant analysis 
(NDA), is able to overcome the first two 
limitations of LDA, and the last problem is 
often resolved by regularization or eigen-
decomposition techniques. In this study, 
we propose a novel nonparametric 
dimension reduction method with 
regularization to overcome all of the 
previously mentioned problems. The 
experimental results on real datasets 
demonstrate that the proposing method 
obtains satisfactory results, even in badly 
posed classification conditions. 
 
Keywords—Linear discriminant analysis 
(LDA), dimension reduction, feature 
extraction, small sample size problem, 
regularization. 

1. INTRODUCTION 

Linear discriminant analysis (LDA) [1] has 
been played an important role for data 
classification. It is one of the most well-known 
dimension reduction methods and has been 
successfully applied to many classification 
problems. The purpose of LDA is to find a linear 
transformation that can be used to project data 

from a high-dimensional space into a low-
dimensional subspace to mitigate the curse of 
dimensionality [2], [3] or the Hughes 
phenomenon [4], [5]. the Hughes phenomenon 
states that the ratio of the number of training 
samples and the number of features must be 
maintained at or above some minimum value to 
achieve statistical confidence [5]. However, it is 
not necessary to have sufficient training samples 
to keep the ratio in a high-dimensional 
classification task. Thus, by feature extraction, 
the ratio can be relatively enlarged. The curse of 
dimensionality can therefore be improved and the 
computational time can be reduced as well. 

Basically, LDA has three inherent 
deficiencies in dealing with classification 
problems. First, LDA is only well-suited for 
normally distributed data [1]. If the distributions 
are significantly non-normal, the use of LDA 
cannot be expected to accurately indicate which 
features should be extracted to preserve complex 
structures needed for classification. Second, since 
the rank of between-class scatter matrix is the 
number of classes (LL) minus one [1], the number 
of features can be extracted at most remains the 
same. Third, the singularity problem arises when 
dealing with high-dimensional and small sample 
size (SSS) data [1], [3], [6], [7]. Generally, there 
are three categories for solving the singularity of 
within-class scatter matrix [8]. In recent years, 
many approaches have been proposed to deal 
with the singularity problem for different 
applications, including PCA+LDA [9], 
regularized LDA (RLDA) [10], LDA/GSVD [11], 
LDA/QR [12], nonparametric weighted feature 
extraction (NWFE) [6] and fuzzy linear feature 
extraction (FLFE) [7]. Regularization and eigen-
decomposition are the most often used techniques. 
However, the first two problems still exist. 
Nonparametric linear discriminant analysis such 
as nonparametric discriminant analysis (NDA) 
[13] provides a solution for circumventing both 
of the previously mentioned problems. In NWFE, 
a regularization technique is employed to solve 
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the singularity problem, and all problems of LDA 
are then resolved. Additionally, nonparametric 
feature extraction is generally of full rank which 
provides the ability to specify the number of 
extracted features desired and works well even 
for non-normally distributed data [6]. 

In this paper, a novel nonparametric 
dimension reduction method, called 
nonparametric linear discriminant analysis 
(NLDA), is proposed. Two techniques, 
regularization and feature adjustment [1, p.32], 
are adopted to circumvent the singularity 
problem and enhance the classification 
performance, respectively. The effectiveness of 
the proposed NLDA is evaluated by two 
hyperspectral datasets with different training 
sample sizes, including the ill-posed and poorly 
posed classification problems [14]. 

The rest of the paper is organized as follows. 
In Section 2, some related dimension reduction 
methods are reviewed. Then the details of the 
proposing nonparametric feature extractions are 
described in Section 3, followed by experimental 
designs and results in Section 4. Finally, 
conclusions are drawn in Section 5. 

2. REVIEWS OF SOME DIMENSION 
REDUCTION METHODS 

In this section, some work related to 
ours is reviewed. For convenience, some 
important notations employed in the study 
are presented in Table 1. 

TABLE 1. 
SOME IMPORTANT NOTATIONS EMPLOYED IN 

THE PAPER 
Notation Description Notation Description 

XX data matrix NN  total training 
samples 

XiXi 
data matrix of 
the iith class NiNi 

number of 
training samples 
in the iith class 

mimi 
mean of the 
iith class x

(i)
`x
(i)
`  the `̀th sample in 

the iith class 

mm global mean pp 
dimensionality of 
the reduced 
subspace 

LL number of 
classes PiPi 

prior probability 
of the iith class  

dd 
dimensionality 
of the original 
space 

Mj(x
(i)
` )Mj(x
(i)
` )

 
local mean of x  
in the jjth class  

(i)
`x
(i)
`

AA transformation 
matrix 

Mj(x
(i)
` )Mj(x
(i)
` )

 

weighted mean of 
 in the th 

class in NWFE 
x

(i)
`x
(i)
` jj

2.1. Linear discriminant analysis (LDA) 
In LDA [1], three scatter matrices, namely 

between-class, within-class and mixture scatter 
matrices, are defined as follows: 

Sb =
1

N

LX
i=1

Ni(mi ¡m)(mi ¡m)TSb =
1

N

LX
i=1

Ni(mi ¡m)(mi ¡m)T ,             (1) 

Sw =
1

N

LX
i=1

NiX
`=1

(x
(i)
` ¡mi)(x

(i)
` ¡mi)

TSw =
1

N

LX
i=1

NiX
`=1

(x
(i)
` ¡mi)(x

(i)
` ¡mi)

T ,      (2) 

St =
1

N

LX
i=1

NiX
`=1

(x
(i)
` ¡m)(x

(i)
` ¡m)TSt =

1

N

LX
i=1

NiX
`=1

(x
(i)
` ¡m)(x

(i)
` ¡m)T ,         (3) 

where  is the number of classes, m  and  
represent the 

LL imi mm

th class mean and the grand mean, 
respectively. 

The goal of LDA is to find a transformation 
matrix  which maximizes between-class and 
minimizes the within-class scatter matrices in the 
reduced dimensional space [1], [11]. The 
common optimization criterion for finding AA is 

AA

A = argmax

A

tr((AT S2A)¡1AT S1A)A = argmax

A

tr((AT S2A)¡1AT S1A).          (4) 

where  or . 
The maximization of (4) is equivalent to solving 
the generalized eigenvalue decomposition 
problem  

(S1; S2) = (Sb; Sw)(S1; S2) = (Sb; Sw) (S1; S2) = (Sb; St)(S1; S2) = (Sb; St)

  S . (5) bvh = ¸hSwvh; h = 1; : : : ; p; p · L¡ 1Sbvh = ¸hSwvh; h = 1; : : : ; p; p · L¡ 1

where  denotes the dimensionality of the 
reduced subspace, (¸ ) represent the eigen-
pair of S , and ¸

pp

wSw

h; vh¸h; vh

1 ¸ ¸2
¡1Sb
¡1Sb ¸ ¢ ¢ ¢ ¸ ¸p¸1 ¸ ¸2 ¸ ¢ ¢ ¢ ¸ ¸p. Thus, the 

transformation matrix A  can be 
obtained. 

= [v1; : : : ; v= [v1; : : : ; vp]p]A

2.2. Regularized Linear Discriminant 
Analysis (RLDA) 

In the regularized LDA (RLDA) [10], when 
 (or ) is singular or ill-conditioned, a 

constant ®® is added to the diagonal elements of 
 by 

SwSw

SwSw

StSt

SR
w = Sw + ®IdSR
w = Sw + ®Id ( or S ),        (6) R

t = St + ®IdSR
t = St + ®Id

where ® 2  and  is the identity matrix of 
size dd . It is easy to verify that (6) is positive 
definite [15]. Thus, the transformation matrix 

 consists of the eigenvectors of 
 (or (( ), where p . 

[0;1)® 2 [0;1)

1; : : : ; vp]1; : : : ; vp]
1Sb
1Sb SR

tSR
t

IdId

SbSb

AA

(SR
w(SR
w

= [v= [v

)¡)¡ )¡1)¡1 · L¡ 1p · L¡ 1

2.3. Nonparametric Discriminant Analysis 
(NDA) 

LDA is called a parametric feature 
extraction method in [1], since it uses the mean 
vector and covariance matrix of each class. 
Fukunaga and Mantock [13] proposed a linear 
discriminant analysis with a nonparametric 
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between-class scatter matrix, called 
nonparametric discriminant analysis (NDA), 
overcoming the limitation for only L  features 
can be extracted at most. 

¡ 1L¡ 1

The nonparametric between-class scatter 
matrix for the two-class problem in NDA, S , 
is represented as 

NDA
bSNDA
b

 SNDA
b =

1

N

N1X
`=1

w`

³
x
(1)
` ¡M2(x

(1)
` )

´ ³
x
(1)
` ¡M2(x

(1)
` )

´T
SNDA

b =
1

N

N1X
`=1

w`

³
x
(1)
` ¡M2(x

(1)
` )

´ ³
x
(1)
` ¡M2(x

(1)
` )

´T  

 +
1

N

N2X
`=1

w`

³
x
(2)
` ¡M1(x

(2)
` )

´ ³
x
(2)
` ¡M1(x

(2)
` )

´T
+

1

N

N2X
`=1

w`

³
x
(2)
` ¡M1(x

(2)
` )

´ ³
x
(2)
` ¡M1(x

(2)
` )

´T ,        

(7) 
where N  and  1 + N2 = NN1 + N2 = N

Mj(x
(i)
` ) =

1

k

kX
s=1

x
(j)
sNNMj(x

(i)
` ) =

1

k

kX
s=1

x
(j)
sNN ,                     (8) 

denotes the sample mean of the kk NN’s with 
respect to x  and is called the local mean of x  
in class jj. The weighting function w  is defined 
as 

(i)
`x
(i)
`

(i)
`x
(i)
`

`w`

w` =
min

n
d®

³
x`; x

(1)
kNN

´
;d®

³
x`; x

(2)
kNN

´o
d®

³
x`; x

(1)
kNN

´
+ d®

³
x`; x

(2)
kNN

´w` =
min

n
d®

³
x`; x

(1)
kNN

´
;d®

³
x`; x

(2)
kNN

´o
d®

³
x`; x

(1)
kNN

´
+ d®

³
x`; x

(2)
kNN

´ ,  (9) 

where ®® is a control parameter between zero and 
infinity, and d(  is the distance from x`x` 
to its kkNN in class ii. 

x`; x
(i)
kNN )d(x`; x
(i)
kNN )

The weighting function (9) is capable of 
achieving the goal of emphasizing the importance 
of boundary points. It takes on values close to 0.5 
and drops off to zero as we move away from the 
class boundary. Obviously, the weighting 
function has the property that samples near the 
class boundary are given higher weights and 
those far away from the class boundary are given 
less. Nevertheless, if we focus on those samples 
near the class boundary, some problems occur. 
For example, if x  is a sample in class 1 and 

 is small, then x  is considered to be 
more close to the class boundary but gains less 
weight. We can imagine that the weighting 
mechanism will notably affect the performance 
of NDA, especially when some classes are highly 
overlapped. In addition, the within-class scatter 
matrix of NDA is the same as LDA, so NDA still 
suffers from the singularity problem when the 
training sample size is small. 

`x`

d®(x`; x
(2)
kNN )d®(x`; x
(2)
kNN ) `x`

2.4. Nonparametric Weighted Feature 
Extraction (NWFE) 

The main ideas of nonparametric weighted 
feature extraction (NWFE) [6] are placing 
different weights on every sample to compute the 
“weighted means”, and applying the distances 

between samples, their weighted means as their 
“closeness” to boundary. Additionally, NWFE 
addressed a regularized within-class scatter matrix 
for alleviating the singularity. As a result, NWFE 
prevents the disadvantages of LDA and NDA and 
obtains satisfactory results [6]. The between-class 
scatter matrix S  and the within-class scatter 
matrix S  of NWFE are defined as 

NW
bSNW
b

NW
wSNW
w

SNW
b =

LX
i=1

Pi

LX
j=1;
j 6=i

NiX
`=1

w
(i;j)
`

³
x
(i)
` ¡Mj(x

(i)
` )

´ ³
x
(i)
` ¡Mj(x

(i)
` )

´T
SNW

b =
LX

i=1

Pi

LX
j=1;
j 6=i

NiX
`=1

w
(i;j)
`

³
x
(i)
` ¡Mj(x

(i)
` )

´ ³
x
(i)
` ¡Mj(x

(i)
` )

´T

,                                                                         (10) 

SNW
w =

LX
i=1

Pi

NiX
`=1

w
(i;i)
`

³
x
(i)
` ¡Mi(x

(i)
` )

´ ³
x
(i)
` ¡Mi(x

(i)
` )

´T
SNW

w =
LX

i=1

Pi

NiX
`=1

w
(i;i)
`

³
x
(i)
` ¡Mi(x

(i)
` )

´ ³
x
(i)
` ¡Mi(x

(i)
` )

´T

,                                                                        (11) 

where the scatter matrix weight w  is defined 
by 

(i;j)
`w
(i;j)
`

 w
(i;j)
` =

d(x
(i)
` ;Mj(x

(i)
` ))¡1PNi

t=1 d(x
(i)
t ;Mj(x

(i)
t ))¡1

w
(i;j)
` =

d(x
(i)
` ;Mj(x

(i)
` ))¡1PNi

t=1 d(x
(i)
t ;Mj(x

(i)
t ))¡1

,      (12) 

and the weighted mean is 

 ,                 (13) Mj(x
(i)
` ) =

NjX
t=1

´
(i;j)
`t x

(j)
tMj(x

(i)
` ) =

NjX
t=1

´
(i;j)
`t x

(j)
t

and 

 ´
(i;j)
`t =

d(x
(i)
` ; x

(j)
t )¡1PNj

t=1 d(x
(i)
` ; x

(j)
t )¡1

´
(i;j)
`t =

d(x
(i)
` ; x

(j)
t )¡1PNj

t=1 d(x
(i)
` ; x

(j)
t )¡1

.             (14) 

Equations (13) and (14) show that each sample 
 has its own weighted mean M  which is 

contributed by each sample x  in class  
according to the distance between x  and . 
The longer the distance between x  and xx  is, 
the less the contribution of x  is. Then, the 
relationships between x  and  are 
employed to design , and `̀ , as 
demonstrated in (10), (11) and (12). Furthermore, 
in NWFE, the within-class scatter matrix  is 
regularized by 

x
(i)
`x
(i)
` j(x

(i)
` )Mj(x
(i)
` )

(j)
tx
(j)
t

(i)
`x
(i)
`

(j)
tx
(j)
t

(j)
tx
(j)
t

Mj(xMj(x
NW
w
NW
w ww

jj
))

x
(j
tx
(j
t

(i)
`
(i)
`

NWNW

(i)
`x
(i)
`

NWNW

(
`
(
`
((

i)
)

i)
)

i;j)i;j)

SwSw

SbSb SS

SRNW
w = 0:5SNW

w + 0:5diag(SNW
w )SRNW

w = 0:5SNW
w + 0:5diag(SNW

w ).     (15) 

Evidently, this regularization form reduces 
the values of the off-diagonal entries of S  to 
half and keeps the diagonal entries invariant. The 
main disadvantage of NWFE is that it needs more 
computational time on computing the weighted 
mean of each class of each sample, particularly 
when the size of training samples is large. 

NW
wSNW
w
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3. NONPARAMETRIC LINEAR 
DISCRIMINANT ANALYSIS (NLDA) 

In this section, the proposing algorithm, 
called nonparametric linear discriminant analysis 
(NLDA), will be introduced. The within-class 
scatter matrix of NLDA (denoted as S ) is 
defined as 

G
wSG
w

SG
w =

LX
i=1

Pi

NiX
`=1

(x
(i)
` ¡Mi)(x

(i)
` ¡Mi)

TSG
w =

LX
i=1

Pi

NiX
`=1

(x
(i)
` ¡Mi)(x

(i)
` ¡Mi)

T ,   (16) 

where  and  are the prior probability and 
local mean with respect to x  in class , 
respectively. 

PiPi MiMi
(i)
`x
(i)
` ii

The between-class scatter matrix of NLDA (S ) 
is defined as 

G
bSG
b

SG
bSG
b =

LX
i=1

Pi

LX
j=1
j 6=i

NiX
`=1

(x
(i)
` ¡Mj)(x

(i)
` ¡Mj)

T=
LX

i=1

Pi

LX
j=1
j 6=i

NiX
`=1

(x
(i)
` ¡Mj)(x

(i)
` ¡Mj)

T ,  

                                                                      (17) 
where M  is the local mean with respect to x  in 
class jj. 

jMj
(i)
`x
(i)
`

The idea to construct NLDA is twofold: 
First, we find that the local mean Mj(x

(i)
` )Mj(x
(i)
` ) can be 

regarded as a leave-( N )-out mean vector. 
Intuitively, 

i ¡ kNi ¡ k

Mj(x
(i)
` )Mj(x
(i)
` )  can approximate to class 

mean m  as the value of kk  is close to Njmj jNj . The 
estimators of scatter matrices will be more 
general and flexible. Second, to work well for 
non-normally distributed data, the within-class 
and between-class scatter matrices should be 
nonparametric simultaneously. The geometric 
depiction of the relationships of the within-class 
and between-class scatter matrices for the 
proposed NLDA is demonstrated in Fig. 1. The 
orange and green dash lines show the 
relationships between local means and class 
means in within-class and between-class, 
respectively. 

 
Fig. 1. Geometric depiction on the relationships 
between the local and class means. 

3.1. Regularization 
For extracting informative features, the 

criterion J = tr(S¡1
w Sb)J = tr(S¡1
w Sb)  requires the within-

class scatter matrix SwSw to be nonsingular [1], [11]. 
However, when the size of training samples is 
small, SwSw is often singular or nearly singular. For 
preventing the singularity of SwSw , the 
regularization is one of the prominent techniques 
[6], [7], [10]. For NLDA, the form (15) employed 
in NWFE is taken. Because the selection of 
regularization parameter ®®  in (18) is a model-
selection problem [16], instead of using 0.5 as the 
regularization parameter, we adopt 

SRG
w = (1¡ ®)SG

w + ®diag(SG
w )SRG

w = (1¡ ®)SG
w + ®diag(SG

w ).   (18) 

The grid-search and cross validation (CV) 
methods are adopted to search the best value of ®® 
in this study. 

3.2. Feature Adjustment 
Simultaneous diagonalization of two 

matrices is a very powerful tool in pattern 
recognition [1]. In fact, the transformation matrix 

 consists of eigenvectors of (  can 
diagonalize  and  simultaneously, which 
has been proven in [1, p.32]. Nevertheless, when 
the singularity problem of S  has resolved by 
utilizing ww , there is another essential issue 
about the eigenvectors has to be taken care. That 
is, the matrix ((  may be not symmetric 
in general, and subsequently the eigenvectors 

’s are not mutually orthogonal. Thus, to make 
the ’s orthonormal with respect to S  to 
satisfy , the scale of v  must be 
adjusted by 

AA

vhvh

SRG
w )¡1SG

b(SRG
w )¡1SG

b

RG
wSRG
w

hvh

SRG
wSRG
w

RGRG

SwSw

RG
w ARG
w A

SG
bSG
b

1SG
b

1SG
b

G
wSG
w

SS

T ST S

RG)¡RG)¡

= I= I

vhvh

AA

vh =
vhq

vT
h SRG

w vh

vh =
vhq

vT
h SRG

w vh

                     (19) 

such that 

vT
hq

vT
h SRG

w vh

SRG
w

vhq
vT

h SRG
w vh

= 1
vT

hq
vT

h SRG
w vh

SRG
w

vhq
vT

h SRG
w vh

= 1.      (20) 
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The proposed algorithm is described as follows. 
Algorithm : NLDA 
Input: the data matrix X 2 , where dd is the 
dimensionality of the original space and NN  is the 
number of training samples. 

Rd£NX 2 Rd£N

Output: the projection data matrix 
, where A 2  and pp  is the 

dimensionality of the reduced subspace. 
Y = AT X 2 Rp£NY = AT X 2 Rp£N Rd£pA 2 Rd£p

Step 1. Select a value of kk for estimating the local 
means, M  and M , with respect 
to each training sample x

i(x
(i)
` )Mi(x
(i)
` ) j(x

(i)
` )Mj(x
(i)
` )

(i)
`x
(i)
`  in XX. 

Step 2. Compute the within-class and between-
class scatter matrices in (16) and (17), 
respectively. 

Step 3. Calculate the regularized within-class 
scatter matrix S  in (18). RG

wSRG
w

Step 4. Select the pp  eigenvectors of ( , 
which correspond to the pp  largest 
eigenvalues. 

SRG
w )¡1SG

b(SRG
w )¡1SG

b

Step 5. Adjust each eigenvector v  by (19), 
, and A

hvh

; vh = 1; : : : ; ph = 1; : : : ; p = [v1; : : : p]; v 2 Rd£pA = [v1; : : : p] 2 Rd£p. 

Step  6. Calculate the transformed data Y . = AT XY = AT X

4. EXPERIMENTAL DESIGN AND 
RESULTS 

4.1. Data Set 
For evaluating the performance of the 

proposed NLDA, two real hyperspectral image 
datasets, the Washington DC Mall (DC) [4] and 
Indian Pine Site (IPS) [4], are employed.  The 
DC and IPS datasets are an urban site and 
forest/agricultural site, respectively. They were 
gathered by a sensor known as the AVIRIS 
(Airborne Visible/Infrared Imaging 
Spectrometer). There are seven information 
classes in the DC dataset and eight classes in the 
IPS dataset. The dimensionality of DC and IPS 
datasets is 191 and 220, respectively. 

4.2. Experimental Design 
A portion of the original DC image and IPS 

image are selected as a test field, as shown in Fig. 
2. Two different cases, each class with 20 (case I: 

) and 40 (case II: 
) training samples are 

investigated to discover the effect on the sizes of 
training samples in the experiments. In both cases, 

the test sample size of each class is 100. The 
cases I and II are the so-called ill-posed and 
poorly posed classification problems [7], [14], 
respectively. They are challenging cases in the 
field of pattern recognition. In each case, the 
training and testing datasets are randomly 
selected, and the experiment will be repeated 10 
times. The average classification accuracies and 
their corresponding standard deviations by using 
1 to 15 features will be computed. 

Ni = 20 < N < dNi = 20 < N < d

Ni = 40 < d < NNi = 40 < d < N

Two linear feature extraction methods, 
NWFE and LDA, are used to compare the 
classification performance with the proposed 
NLDA. In this study, the 1-nearest neighbour 
(1NN) and soft-margin SVM with RBF kernel 
function (SVM-RBF) classifiers are used, which 
are implemented in PRTools [17] and LIBSVM 
[18], respectively. For the soft-margin SVM 
classifier, there is a parameter CC  to control the 
trade-off between the margin and the size of the 
slack variables, and a parameter ¾¾  for the RBF 
kernel function. We use the five-fold cross 
validation to find the best CC  and  within the 
given set f . The values of kk  for 
estimating the local mean in NLDA are selected 
from {3, 5, 7} by using five-fold cross validation 
as well. 

¾¾

10¡5; : : : ; 105gf10¡5; : : : ; 105g

 
(a) Washington DC Mall 

 
(b) Indian Pine Site 

Fig. 2 The color IR images of a portion of the 
Washington DC Mall and Indian Pine Site data 
are displayed in (a) and (b), respectively. 

4.3. Experimental Results 
The best average classification accuracies 

(denoted as “acc”) with their corresponding 
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standard deviations (denoted as “std”) and 
number of features used (denoted as “ ”) are 
summarized in Table 2. Obviously, the proposed 
NLDA with 1NN classifier obtains the best 
results on the two datasets in all cases. The 
results also verify that the necessity of using 
more features than L¡  for classification. For 
example, NLDA with 1NN classifier on 
Washington DC Mall dataset with Nii  
obtains the best result when the dimensionality of 
the reduced subspace is 13, which is over L . 

pp

N

L

1L¡ 1

= 20= 20

¡ 1¡ 1

 
TABLE 2 

THE BEST AVERAGE CLASSIFICATION 
ACCURACIES (%) WITH THE CORRESPONDING 
STANDARD DEVIATIONS (%)AND THE NUMBER 
OF FEATURES USED FOR DIFFERENT FEATURE 

EXTRACTION METHODS BY USING 1NN AND 
SVM-RBF CLASSIFIERS. 

Ni = 20Ni = 20 Ni = 40Ni = 40 
Data 
Set 

Feature 
Extraction Classifier acc±std 

( ) pp
acc±std 

(pp) 
1NN 84.3±1.6 87.5±1.4 None SVM-RBF 84.3±1.1 86.4±0.6 

1NN 67.3±2.6 
(6) 

88.2±1.9 
(6) LDA 

SVM-RBF 57.3±4.2 
(6) 

82.3±2.3 
(6) 

1NN 90.8±1.5 
(13) 

93.1±0.9 
(11) NLDA 

SVM-RBF 90.3±1.1 
(13) 

92.7±0.9 
(13) 

1NN 88±2.3 
(5) 

91.2±1.2 
(8) 

DC 

NWFE 
SVM-RBF 89.5±1.4 

(4) 
91.2±0.9 

(5) 

1NN 66.7±1.0 71.9±1.0 None 
SVM-RBF 68.9±2.6 70.2±1.9 

1NN 62.2±2.2 
(7) 

65.3±1.4 
(7) LDA 

SVM-RBF 62.5±2.2 
(7) 

65.6±1.2 
(7) 

1NN 80.4±1.4 
(8) 

84.8±1.0 
(7) NLDA 

SVM-RBF 78.7±1.9 
(8) 

82.4±1.5 
(7) 

1NN 79.8±2.1 
(8) 

82.7±1.9 
(7) 

IPS 

NWFE 
SVM-RBF 78.2±2.1 

(8) 
81.4±2.2 

(14) 
 

Some classified images of DC and IPC by 
using different feature extraction algorithms with 
1NN classifier are demonstrated in Figs. 3 and 4, 
respectively. The DC thematic maps are obtained 
by applying linear feature extraction methods 
with 1NN classifier in case I (Ni ). Here pp is 
the number of features used by these methods 
with the highest accuracies in the corresponding 

methods. NLDA evidently obtains the best visual 
effect than the other methods since its excellent 
classification in “grass”, “tree” and “roads” parts. 
For the performance on IPS dataset, NLDA 
outperforms other methods, particularly in “corn-
notill” and “woods” parts. The variations in 
averaged classification accuracy obtained by 
applying NLDA and NWFE with 1NN classifier 
over different subspace dimensionality are 
analyzed with the help of plots shown in Fig. 5. 
For DC dataset, the accuracy of NWFE drops 
significantly as the dimensionality of the reduced 
subspace is more than 10. However, the accuracy 
of NLDA only varies little on DC dataset. On IPS 
dataset, there appears to be no appreciable 
difference between the performances of the two 
methods in Ni  case. The classification 
accuracy of NLDA drops a little as the 
dimensionality of subspace is over 8, but NWFE 
does not. In Fig. 6, we demonstrate the variations 
in averaged classification accuracy obtained by 
applying NLDA with 1NN classifier over 
different  values on DC and IPS datasets in 

 case. The results show that there exists 
considerable performance difference between 
NLDA with and without (® ) regularization 
technique. Also, the importance of introducing 
regularization for high-dimensional classification 
problem with small training samples is revealed. 

= 20Ni = 20

= 20Ni = 20

®®

Ni = 20Ni = 20

= 0® = 0

 

 
(a) NLDA +1NN (p ) = 13= 13p

 
(b) NWFE +1NN (p ) =p = 88
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(c) LDA +1NN (p ) = 6p = 6

Fig. 3 Thematic maps resulting from the 
classification of the area of Fig. 2(a) in case I 
(Ni ). (a) to (c) are the results by NLDA, 
NWFE and LDA with 1NN classifier, 
respectively. 

= 20Ni = 20

 

 
(a) The ground truth 

 
(b) NLDA+1NN( ) p = 8p = 8

 
(c) NWFE+1NN (p ) = 8p = 8

 
(d) LDA+1NN (p ) = 7p = 7

Fig. 4 Thematic maps resulting from the 
classification of the area of Fig. 2(b) in case II 
(Ni ). (a) is the ground truth of the area 
with eight classes, and (b) to (d) are the results 
applying NLDA, NWFE and LDA with 1NN 
classifier, respectively. 

= 40Ni = 40
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Fig. 5. Variations in averaged classification 
accuracy obtained by applying NLDA and 
NWFE with 1NN classifier over different 
subspace dimensionality on Washington DC 
Mall and Indian Pine Site datasets. 
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Fig. 6. The different averaged classification 
accuracy obtained by applying NLDA with 
1NN classifier over different values of ®®on 
Washington DC Mall and Indian Pine Site 
datasets in  case 1. 
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5. CONCLUSIONS 

The objective of this study is to emphasize 
the necessities of developing a nonparametric 
feature extraction algorithm and relative issues 
for high-dimensional data classification when the 
size of the training samples is small. In this study, 
we propose a novel nonparametric linear 
discriminant analysis, NLDA, with two important 
techniques, regularization and feature adjustment, 
for improving its classification performance. As 
shown from the experimental results, NLDA has 
better classifiability than NWFE and LDA, even 
in the ill-posed and poorly posed classification 
situations. In addition, as supported from the 
results of NLDA and NWFE, the type of mean 
vector seems to be more important than the 
weighting parts for constructing a nonparametric 
feature extraction model. 
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