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Abstract—Wireless capsule endoscopy (WCE) 
is the state-of-the-art technology used for the 
investigation of intestines. With this 
technology, a physician can examine the entire 
section of the intestines, including the blind 
section not reachable with a traditional 
endoscope. However, one problem derived 
from this new technology is the tremendous 
amount of images that need to be inspected by 
human eyes and this becomes a burden to the 
physician. This paper presents some methods 
for an automatic detection system to identify 
suspected capsule endoscope images such as 
chyme blocked, suspected blood indicator, and 
ulcer in order to reduce this burden. These 
methods use standard local binary pattern 
(LBP) and Sobel-LBP as recognition features 
and support vector machines (SVM), nu-SVM 
(ν-SVM), and one class SVM (OCSVM) as 
classifiers. For comparison, the nearest 
neighbor classifier is also considered. 
Experimental results carried out on 10-runs of 
5-fold cross validation using 80% of the 
training dataset showed that the combination 
of image downsampling by 1, standard LBP, 
and the OCSVM classifier outperforms other 
methods. The resulting accuracy is 98.10% 
and the computational time in the testing 
phase is below 0.5 seconds per image, which is 
applicable for practical applications.  

Keywords—Support Vector Machines, 
Wireless Capsule Endoscopy, Local Binary 
Pattern, Cross Validation, Arithmetic Means.   

1. INTRODUCTION 

Wireless capsule endoscopy (WCE) is a 
disposable imaging capsule which could visualize 
the small bowel mucosa and trace the 
abnormalities of the small bowel. This capsule is 
able to transmit color and high fidelity images of 
gastrointestinal tract, including intestines [1]. 

An image sequence with two frames per 

second and 256 x 256 resolution is transmitted by 
a typical capsule endoscope for about 7 to 8 
hours, generating a total of approximately 50,000 
frames for each examination. The image 
sequence is then viewed and annotated by a 
physician [1], [2]. The physician normally takes 
45 minutes to 2 hours to view and analyse the 
result of one examination, depending on the 
physician’s experience and the patient’s 
abnormalities.    

This paper proposes an automatic detection 
system to identify the image with either chyme 
blocked, suspected blood indicator (SBI), or 
white spot abnormality as shown in Fig. 1. These 
three abnormalities are selected because they 
occur often in gastrointestinal tract. 

 The block diagram of the system is shown in 
Fig. 2. First, the endoscopy images are 
downsampled. Second, the region of interest 
(ROI) in downsampled images is extracted. Third, 
Image features are extracted using the average 
intensity, followed by the generation of local 
binary pattern (LBP) histogram. Two kinds of 
LBP are examined in this paper, which are the 
standard LBP and the Sobel-LBP. After that, a 
support vector machine (SVM) training or testing 
is conducted. Three kinds of SVM are examined 
in this paper, which are the basic SVM, ν-SVM, 
and one-class SVM (OCSVM). 

The LBP is a nonparametric local texture 
descriptor that can be derived efficiently [3]. In 
addition, the LBP texture features are invariant to 
any monotonic change in gray level intensities, 
resulting in more robust representation of 
textures under varying illumination conditions [4]. 
SVM is a supervised learning method for 
classification [5]. The learning strategy of SVM 
is based on the principle of structural risk 
minimization, which makes SVM has better 
generalization ability than other traditional 
learning machines that are based on the learning 
principle of empirical risk minimization [6]. 
However, due to the fact that the sizes of normal 
and abnormal images acquired are different, the 
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problem of class-boundary-skew (CBS) may 
occur when a basic SVM is used. To solve this 
problem, this paper also considers two new 
variants of SVM, which are called ν-SVM [7], [8] 
and one class SVM (OCSVM) [9], [10]. 

  

        
                    (a)                              (b) 

            
                (c)                              (d) 

Fig. 1 Example of the capsule endoscopy images: 
(a) normal, (b) chyme blocked, (c) suspected 
blood indicator (SBI), and (d) white spots. 
 

 
(a) 

 

 
(b)  

Fig. 2 System block diagram: (a) training process 
and (b) testing process. 
 

This paper is organized as follows. Section 2 
describes image downsampling and the extraction 
of region of interest (ROI). Section 3 describes 
the methods of standard LBP and Sobel-LBP. 
Section 4 introduces SVM classifiers, including 
basic SVM, ν-SVM, and OCSVM. Section 5 

presents the experimental results. Finally, 
conclusions are drawn in Section 6.   

2. IMAGE DOWNSAMPLING AND 
REGION OF INTEREST (ROI) 

In this paper, the three downsampling factors 
considered are 1, 2 and 4 which are shown in Fig. 
3. A downsampling factor of 1 means that the 
original image with 256 x 256 pixels would be 
used for the next block (i.e. feature extractor). 
The downsampling process is two-dimensional. 
Thus, only one quarter and one sixteenth of the 
original pixels will be preserved if downsampling 
factors of 2 and 4 are performed, respectively. 
Only the preserved pixels will be processed in the 
next block.  

In addition, only the pixels inside an ROI are 
considered in every feature extractor. The ROI 
used here is a circular region located in the 
middle and obtained by excluding all the texts 
and the pure black background from a capsule 
endoscopy image as shown in Fig. 4. 

 

 
           (a)                       (b)                     (c) 
Fig. 3 Image downsampling by a factor of (a) 1, 
(b) 2, and (c) 4. Here, only pixels denoted as 
black dots will be processed in the next step. 
 

                          
                     (a)                             (b) 

 
                                      (c)  
Fig. 4 ROI extraction: (a) original image, (b) 
binarized image with a circular ROI, and (c) 
image after ROI extraction. 
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3. LOCAL BINARY PATTERNS (LBP) 

LBP operators offer an alternative approach 
for texture representation. They are 
computationally efficient and nonparametric 
local image texture descriptors. In addition, LBP 
texture features are invariant to any monotonic 
change in gray level intensities. 

3.1. Standard LBP 

The standard LBP operator takes a local 
neighborhood around each pixel, thresholds the 
pixels of the neighbourhood at the value of the 
central pixel and uses the resulting binary-valued 
image patch as a local image descriptor [3]. It 
was originally defined for 3 x 3 neighborhoods, 
giving 8 bit codes based on the 8 pixels around 
the central one. Formally, the standard LBP 
operator takes the form  

                     ∑
=
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where in this case n runs over the 8 neighbors of 
the central pixel c, in and ic are the intensity 
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The LBP encoding process is illustrated in Fig. 5. 

 
 
Fig. 5 An example of LBP value estimation: (a) 
an original 3 x 3 neighborhood, (b) the values of 
the pixels in the thresholded neighborhood, (c) 
binomial weights assigned to the corresponding 
pixels, and (d) the values of eight neighbor pixels 
are summed to obtain a single value for the 
corresponding pattern.  

 

3.2. Sobel-LBP 

The Sobel operator contains two 3x3 kernels 
(horizontal kernel Sx and vertical kernel Sy) which 
are convolved with the original image I to obtain 
gradient approximations [12]: 
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where Ix and Iy represent the horizontally and 
vertically filtered results, respectively. Normally 
Ix and Iy are combined to give the gradient 

magnitude 22 )()( yx II + . Here the Sobel-LBP 
operator is defined as the concatenation of LBP 
operations on Ix and Iy: 
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where in this case n runs over the 8 neighbors of 
the central pixel c, x

nI  and x
cI are the intensity 

values of horizontally filtered results at n and c, 
y
nI  and y

cI are the intensity values of vertically 
filtered results at n and c, respectively. 

4. SUPPORT VECTOR MACHINES 
(SVM) 

The main idea of a support vector machine is 
to construct a hyperplane as the decision surface 
in such a way that the margin of separation 
between positive and negative training samples is 
maximized [11], as shown in Fig. 6.   

4.1. Support Vector Machine (SVM) 

Let {(xi, yi) | i = 1, 2, … , N} be the training 
sample, where xi is the i-th input sample, yi is the 
corresponding target output, and N is the number 
of training samples. We assume that the sample 
represented by the subset yi = +1 and the sample 
represented by the subset yi = -1 are “linearly 
separable.” Then, the equation of a decision 
surface in the form of a hyperplane is given by 
[5], [11]: 

if u > 0 
 

otherwise 
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                              0=+bTxw                           (6) 
where w is an adjustable weight vector, x is an 
input vector, and b is a bias. For linearly 
separable patterns, we obtain:  
                     0≥+ bT xw     for yi = +1              (7) 
                     0<+bT xw      for yi = -1 

 

 
 
Fig. 6 Illustration of the concept of SVM. 
 

When the data are not separable, a soft margin 
classifier is used. This introduces a 
misclassification cost C, which is assigned to 
each misclassified training sample. This can be 
done by introducing positive slack variables ξi as 
follows [5], [11]: 

                                                                                                                                                                                     
 
                                                                            (8) 

 
If a classification error occurs, the 

corresponding ξi must exceed unity, so ∑iξi is an 
upper bound for the number of classification 
errors. Then, the cost function Φ (·) to be 
minimized is given by:  
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where C is a user-specified positive parameter. 
The parameter C controls the trade-off between 
complexity of the machine and the number of 
nonseparable points. A larger C corresponds to a 
higher penalty of classification errors.  

By taking partial differential to the Lagrangian 
with respect to the variables, the dual problem 
becomes: 
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In this paper, a radial basis function (RBF) is 
used as the kernel function. The RBF kernel is 
defined as 
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where σ is a user-specified parameter. 
For an unseen data vector x, the decision 

function is given by: 
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4.2. ν-SVM 

The ν-SVM uses a new parameter ν which 
controls the number of support vectors and 
training errors [7], [8], [13]. The parameter ν � 
(0, 1] is an upper bound of the fraction of training 
errors and a lower bound of the fraction of 
support vectors. 

Given training vectors xi 
� Rn, i = 1, 2, …, N, 

and the corresponding target output y � RN such 
that yi �{1, -1}, the primal problem becomes: 

              ∑
=

+−=Φ
N

i
i

T
i N 1

1
2
1

),( ξνρξ www         (14) 

subject to 
,)( ii

T
i by ξρ −≥+xw  

               ,0≥iξ  i = 1, 2,…, N,  .0≥ρ              (15) 
By taking partial differential to the Lagrangian 

with respect to the variables, the dual problem 
becomes: 
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Again, RBF is used as the kernel function. The 
RBF kernel is defined as 
                  ||)||exp(),( jijik xxxx −−= γ             (18) 

where γ is the kernel width parameter. 
For an unseen data vector x, the decision 

function is given by: 
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4.3. One Class SVM (OCSVM) 

One-class SVM is used for estimating the 
support of a high-dimensional distribution [9], 
[13], [14]. It is an unsupervised approach that 
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separates outliers from the majority. This method 
seeks an approximation function to categorize the 
majority of data [19]. The OCSVM algorithm 
maps input data into a high dimensional feature 
space (via a kernel) and iteratively finds the 
maximal margin hyperplane which best separates 
the training data from the origin as shown in Fig. 
7. The OCSVM may be viewed as a regular two-
class SVM where all the training data lie in the 
first class, and the origin is taken as the only 
member of the second class [20].  
 

 
Fig. 7 Geometry interpretation of OCSVM [14]. 

 
Given training vectors xi � Rn, i = 1, 2,…, N 

without any class information, the primal 
problem becomes: 
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By taking partial differential to the Lagrangian 
with respect to the variables, the dual problem is 
similar to that in (17) subject to 

       ,10 ≤≤ iα  i = 1, 2, …, N, .
1
∑
=

=
N

i
i Nνα       (22) 

Again, RBF is used as the kernel function (Eq. 
(19)). 

For an unseen data vector x, the decision 
function is given by: 
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5. EXPERIMENTAL RESULTS 

The experiment used 350 endoscopy images, 
including 136 normal images and 214 abnormal 

images (150 images with chyme blocked and/or 
SBI, and the remaining 64 images with white 
spot lesions). 10-runs of cross-validation using 35 
(10%), 44 (12.5%), 70 (20%), 175 (50%), and 
280 (80%) training datasets, were conducted to 
determine the classifier parameters (which were 
determined from a wide range of numbers) and to 
evaluate the recognition accuracy using a-means 
(to be defined later). In this paper, the capsule 
endoscope images without abnormalities were 
considered as positive data.  

The performance of a classifier can be 
determined using the quantities of data samples 
defined by the confusion matrix (Table 1). 

TABLE 1 
THE CONFUSION MATRIX 

 Actual 
Positive Negative 

Predicted 
Positive True Positive 

(TP) 
False Positive 

(FP) 

Negative False Negative 
(FN) 

True Negative 
(TN) 

 
The entries in the confusion matrix in this 

paper have the following meaning: 
• TP is the number of correct classification of 

normal images.  
• FP is the number of incorrect classification 

of abnormal images. 
• TN is the number of correct classification of 

abnormal images.  
• FN is the number of incorrect classification 

of normal images. 
The true positive rate (TP rate) or sensitivity or 

recall is the proportion of positive cases that were 
correctly identified and is given by: 

    TP rate = sensitivity = recall = 
FNTP

TP
+

     (24) 

The true negative rate (TP rate) or specificity 
is the proportion of negative cases that were 
correctly identified and is given by: 

              TN rate = specificity = 
FNTP

TP
+

       (25) 

The recognition accuracy was evaluated by the 
arithmetic means (a-means) [18], defined as 

                    
2
1

=a (TP rate + TN rate)               (26) 

The a-means was chosen as the evaluator since 
it is a reliable performance index, especially for 
the imbalanced test data set. For balanced test 
data set, this a-means is equal to accuracy and is 
given by: 

               
FPTNFNTP

TNTP
accuracy

+++
+

=            (27) 
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Fig. 8 Recognition performance obtained using standard LBP. 

 

 
Fig. 9 Recognition performance obtained using Sobel-LBP. 

 
The results obtained using the standard LBP 

are shown in Fig. 8 and Table 2 while the results 
obtained using the Sobel-LBP are shown in Fig. 9 
and Table 3. The number inside a parenthesis and 
following the number of training data sets 
denotes the downsampling factor used. Fig. 8 and 
Fig. 9 show the recognition accuracy of the 4 
classifiers, that is, nearest-neighbor (NN), SVM, 
ν-SVM, and OCSVM. The number of bins used 
for the standard LBP is 256 while the Sobel-LBP 
consists of concatenated 256 bins for each 
horizontal and vertical filtered result, respectively. 
The LBP computation involves the use of 
overlapping blocks and only ROI pixels are 
considered as the central pixels in a block. The 
classifier parameters used for SVM are error 
weights C and radial basis function σ. For ν-SVM 
and OCSVM, the parameters used are user-
defined parameter ν, RBF kernel width γ, and 
margin size ρ. These parameters were determined 

empirically. Overall speaking, the OCSVM 
classifier gives the best recognition performance 
according to the experimental results reported 
here. In general, many factors will affect the 
recognition accuracy, including feature selected, 
number of runs, classifier parameters, and the 
training dataset used. 
   For 10-runs of 5-fold cross validation using 
80% of the training dataset, the combination of 
image downsampling by 1, LBP, and OCSVM 
classifier gives the following results: 
a. Average of a-means: 98.10% (The maximum 

a-means is 100.00%, the minimum a-means 
is 93.28%), 

b. Average of accuracy: 98.08%, 
c. Average of TP rate: 98.16%, 
d. Average of TN rate: 98.03%,  
e. Average of precision [15]: 97.07%, 
f. Average of Kappa value [16]: 0.9598 (almost 

perfect inter-rater agreement), 
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g. Average of g-means [17]: 98.07%, 
h. Average of F-measure [15]: 97.55%, 
i. Average number of support vectors is 256.86. 

In some cases, the recognition performance of 
Sobel-LBP is better than standard LBP for 
smaller training datasets. Some downsampling 
factors used can cause a significant drop on 
recognition performance. When the standard LBP 
method is used, one reason for such a drop is the 
homogeneity of image such that the values of the 
pixels in the thresholded neighborhood, as 
performed in Fig. 5 (b), are all 1 for neighbor 
pixels because the pixel values in all neighbor 
pixels are equal to the central pixel, resulting in a 
single LBP value of 255. The corresponding 
histogram of standard LBP would be biased to a 
peak at the value of 255. This would in turn 
decrease the discrimination nature of the features 
derived from the histogram. When the Sobel-LBP 
method is used, the drop in recognition accuracy 
is significant for the case of downsampling factor 
by 4 because the image gradients obtained by 
using Sobel operators vary significantly in this 
case. 

TABLE 2 
RECOGNITION PERFORMANCE OBTAINED 

USING LBP 

 
TABLE 3 

RECOGNITION PERFORMANCE OBTAINED 
USING SOBEL-LBP 

 

The computational time for testing a single 
image was evaluated by a personal computer with 
the following specification: Hardware: 3.00 GHz 
Intel (R) Pentium (R) 4 CPU and 1.00 GB RAM; 
Software: MATLAB 7.0 and Windows XP 
operating system. 

The running time results for standard LBP and 
Sobel-LBP are shown in Table 4 and 5, 
respectively. In a real application, the capsule 
endoscope takes two images per second. Thus, a 
testing time lower than 0.5 seconds per image is 
desirable for real-time applications. The 
downsampling factors of 2 and 4 make the 
computation more efficient. On the average, the 
OCSVM classifier gives the lowest 
computational time. The results obtained for all 
cases are desirable for practical applications 
because the computational time is less than 0.5 
seconds per image.  

 TABLE 4  
AVERAGE COMPUTATIONAL TIME PER IMAGE 

IN SECONDS USING LBP 

 
TABLE 5  

AVERAGE COMPUTATIONAL TIME PER IMAGE 
IN SECONDS USING SOBEL-LBP 

 
 

Since training sets and test sets vary from run 
to run, every run may have different misclassified 
images. Some images are misclassified due to 
poor lighting. Some normal images are 
misclassified because of some floating objects, 
such as food or liquid. Some abnormal images 
are misclassified because they contain very little 
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(or not enough) white spot lesions. 

6. CONCLUSION 

This paper proposes an abnormality detection 
system for capsule endoscope images. The 
system is intended to identify the images with 
certain symptoms of gastrointestinal tract 
automatically. Experimental results carried out 
on 10-runs of 5-fold cross validation using 80% 
of the training dataset showed that the 
combination of image downsampling by 1, 
standard LBP, and the OCSVM classifier 
outperforms other methods. The resulting 
accuracy is 98.10% and the computational time 
in the testing phase is below 0.5 seconds per 
image, which is applicable for practical 
applications. 
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