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Abstract—This study presents a robustness 

design of fuzzy control for nonlinear systems 

with multiple time delays. First, the neural-

network (NN) model is employed to 

approximate the nonlinear multiple time-delay 

(NMTD) plant. Then, a linear differential 

inclusion (LDI) state-space representation is 

established for the dynamics of the NN model. 

According to the LDI state-space representation, 

a robustness design of fuzzy control is proposed 

to overcome the effect of modeling errors 

between the NMTD plant and the NN model. 

Next, in terms of Lyapunov’s direct method is 

proposed to guarantee that the NMTD system 

under fuzzy control can be stabilized. 

Subsequently, the stability condition of this 

criterion is reformulated into a linear matrix 

inequality (LMI). Based on the LMI, a fuzzy 

controller is synthesized to stabilize the NMTD 

system and the 
H  control performance is 

achieved at the same time. If the fuzzy 

controller cannot stabilize the NMTD system, a 

dither, as an auxiliary of the fuzzy controller, is 

simultaneously introduced to stabilize the 

NMTD system. If the frequency of dither is high 

enough, the trajectory of the dithered system 

and that of its corresponding mathematical 

modelthe relaxed system can be made as close 

as desired. This fact enables us to get a rigorous 

prediction of stability of the dithered system by 

establishing the stability of the relaxed system. 

 

Keywords —Neural network (NN), modeling error, 
H fuzzy control, dither, time delay. 

TION 1. INTRODUC

 information transmission, 

time delays naturally exist in many systems. The 

ex

In practice, due to the

istence of time delays is frequently a source of 

instability and encountered in various engineering 

systems [1], [2]. Therefore, the problem of stability 

analysis of time-delay systems has been one of the 

main concerns of researchers wishing to inspect the 

properties of such systems. Stability criteria of 

time-delay systems so far have been approached in 

two main ways according to the dependence upon 

the size of delay. One direction is to contrive 

stability conditions that do not include information 

on the delay, while the other direction includes 

methods which take time delay into account. The 

former case is often referred to as delay-

independent criteria and generally gives good 

algebraic conditions. In particular, some delay-

independent stability conditions and stabilization 

approaches have been proposed for nonlinear time-

delay systems. Results are readily available in the 
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literature (e.g. [2]-[8] and the references therein). 

However, abandonment of information on the size 

of time delay necessarily causes conservativeness 

of the criteria, especially when the delay is 

comparatively small [9].  

In the past few years, neural-network (NN)-

based modeling has become an active research 

fie

in

ce of nonlinear systems is important issue 

for control design. The 
H control problem for 

nonlinear systems has received considerable 

[51]. Hence, a fuzzy control design with guaranteed 

control performance has been introduced for 

nonlinear systems in this study. However, to the 

best of our knowledge, the stabilization problem of 

robust 


attention over the last few decades [40]-[42], [45]- 

H  fuzzy control for nonlinear multiple 

time-delay systems remains an open area. 

Furthermore, it has been long known that the 

dither,  a nonlinear system may improve its 

performance (e.g. [52]-[63] and the r

ld because of its unique merits in solving 

complex nonlinear system identification and 

control problems (e.g. [10]-[19] and the references 

therein). Neural networks are composed of simple 

elements operating in parallel. These elements are 

inspired by biological nervous systems. As a result, 

we can train an NN to represent a particular 

function by adjusting the weights between elements.  

Additionally, fuzzy control has attracted a great 

deal of attention from both the academic and 

injection of a high frequency signal, known as a 

into

eferences 

therein). Better performance is viewed as less 

distortion in the system output, augmented stability, 

and quenching of limit cycles as well as jump 

phenomena [56]. A rigorous analysis of stability in 

a general nonlinear system with a dither control was 

given in Steinberg and Kadushin [52]. On the basis 

of the relaxed method, the relaxed system may be 

stabilized by regulating appropriately the 

parameters of dither. Mossaheb [55] pointed out 

that the dither of sufficiently high frequency may 

result in output of the relaxed system and that of the 

dithered system as close as desired. This 

phenomenon allows us for a rigorous prediction of 

the stability of the dithered system by establishing 

the stability of the relaxed system, provided the 

dither has a high enough frequency. In recent years, 

there are also some successful applications of 

dithers, Feeny and Moon [59] applied dither to 

quench chaos inherent to a stick-slip oscillator and 

showed that the discontinuity for the low-frequency 

behavior could be effectively removed. Moreover, 

Iannelli et al. [61]-[62] indicated that discontinuous 

nonlinearities of feedback systems could be 

narrowed using dithers.  

However, to our knowledge, making use of dither 

to overcome the influence of modeling error via 

dustrial communities during the last decade, and 

there have been many successful applications [20]- 

[29]. Despite the success, it has become evident that 

many basic issues remain to be further addressed. 

Stability analysis and systematic design are 

certainly among the most important issues for fuzzy 

control systems. Lately, there have been significant 

research efforts devoted to these issues (e.g. [30]-

[38]). All of them, however, neglect the modeling 

error between nonlinear system and fuzzy model. In 

fact, existence of modeling error may be a potential 

source of instability for control designs that have 

been based on the assumption that the fuzzy model 

exactly matches the nonlinear plant [39]. Recently, 

Kiriakidis [39], Chen et al. [40]-[41] and Cao et al. 

[42]-[44] have proposed novel approaches to 

overcome the influence of modeling error in the 

field of model-based fuzzy control for nonlinear 

systems.  

Not only the stability but also the control 

performan

 



neural-network (NN)-based approach has not been 

discussed yet. A robust  ness design of 
H  fuzzy 

co

approximate the NMTD plant. Then, a linear 

ntrol for NMTD systems by dithers is hence 

proposed in this study to improve systems’ 

performance. An NN model is first employed to 

differential inclusion (LDI) state-space 

representation is established for the dynamics of the 

NN model. According to the LDI state-space 

representation, a robustness design of fuzzy control 

is proposed to overcome the effect of modeling 

errors between the NMTD plant and the NN model. 

Next, in terms of Lyapunov’s direct method is 

proposed to ensure that the NMTD system under 

fuzzy control can be stabilized. Subsequently, the 

stability condition of this criterion is reformulated 

into a linear matrix inequality (LMI). Based on the 

LMI, a fuzzy controller is synthesized to stabilize 

the NMTD system and the 
H  control performance 

is achieved at the same time. If the fuzzy controller 

cannot stabilize the NMTD system, the fuzzy 

controller and the dither (as an auxiliary of the 

fuzzy controller) are simultaneously introduced to 

dither’s parameters. 

2. PRELIMINARY NOTATIONS 

The following notations will be used throughout 

this paper. 

N : nonlinear multiple time-delay (NMTD) plant 

(see (3.1)) 

stabilize the NMTD system by regulating the 

N : closed-loop NMTD system (see Fig. 1

N : dithered plant (see (5.1a)) 

a.) 

d

d
:closed-loop dithered system (see Fig. 1b.) 

rN : relaxed

N

 model of  (see (5.1b)) 
dN

rN :closed-loop relaxed system (see Fig. 1c.) 

 

 

D systemFig. 1a. Closed-loop NMT N . 

 

Fig. 1b. Closed-loop dithered system
dN . 

 

Fig. 1c. Closed-loop relaxed system
rN . 

STEM DESCRIPTION 

Consider a nonlinear m  

(NMTD) plant N described by the following 

equat

  (3.1) 
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Definition 3.1 [40]: The solutions of a dynam c 

system are said to be uniform

i

ly ultimately bounded 

(UUB) if there exist positive constants   and  , 

and for every (0,  ) ere is a positive constant 

1 1t t  such that 

 

  th

,( )  

1
~)()0( txx        tt  .                    (3.2)                          

 n

e repre

controll sized to stabilize the NMTD 

stem.  

              

In this section, an NN model is first established 

to approximate the NMTD plant N. Then, the 

dynamics of the NN model is converted into a  

LDI state-spac sentation. Finally, a fuzzy 

er is synthe

sy

3.1 Neural-Network (NN) Model 

The NMTD plant N is approximated by an NN 

model, has S layers with ) , ,2 ,1( SR   

neurons for each layer, in which 
1( ) ~ ( )x t x t  are the 

state variables, )1 1 1( ) ~ (x t x t 2 1),   ( ) ~ (k x t x t k     

 delays and 
1( ) ~ ( )zu t u t  



are the state 

ntifying the layers. 

er of the 

o the names for each of these

 the

 

variables with

are the input variables. 

In order to distinguish among these layers, the 

superscripts are used for ide

Specifically, we append the numb layer as 

a superscript t  

variables. Thus, the weight matrix for   th 

layer is written as W  . Moreover, it is assumed that 

( ) ( 1, 2 , , ; 1,  2 ,  ,  )t R S 
      is the 

net input and ( ( ))T v t


 is the transfer function of the 

neuron. Subsequently, the transfer function vector 

of the 

v

 th layer can be defined as: 

1 2( ( )) [ ( ( )) ( ( ))  ( ( ))] , 1,2, ,   T

R
v t T v t T v t T v t S

    
      (3.3) 

where ( ( ))( 1, , )T v t R2, 
     is the transfer function 

of the  th neuron. Then the final output

with 

     T
kk tx  tx  tX )]()()( 12    

for L    k ,2,1 
k x txt )([)( 111   

 ,  
T

z tu  tu tutU )]()()([)( 21  . 

3.2 Lin oear Differential Inclusi n (LDI) 

rder to deal with the stability problem of the 

NMTD system, an LDI state-space representation 

stablished for the dynamics of the NN model 

and it can be described as [11, 64]: 

In o

is e

1

( ) ( ( )) ( ), ( ( )) ( ( ))i i
i

O t A a t O t A a t h a t A


    


(3.5) 

where   is a positive integer, ( )a t  is a vector 

signifying the dependence of ( )ih   on its elements, 

( 1,2, , )iA i    are constant matrices and 

1 2( ) [ ( ) ( )  ( )] .TO t o t o t o t  Furtherm

))(t

n

ore, it is 

 om

procedure is take

NN model (3.4) by LDI sta

To begin with, notice that the output 

,       

w

assu  ,0))((i tahmed that 




1

1
i

.(i ah

. I

Fr  the 

properties of LDI, without loss of generality, we 

can use ( )ih t  instead of ( ( ))ih a t  the following, a 

n to represent the dynamics of the 

te-space representation 

[11]. 

( ( ))T v t


satisfies 
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here 
1g


 and 
2g


 denote the minimum and the 

m of maxim e derivative of , 

respectively, and they are given in the following: 

u th ( ( ))T v t

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 of NN 

model can be inferred as follows: 
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Subsequently, the min-max matrix 
G  o  th 

layer is defined as follows: Ttx  tx txtX )]()()([)( 21  , 
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rpolation method, the 

transfer function ( ( ))T v t


 can be represented as 

R
 

    

Moreover, based on the inte

follows [11]: 
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and 
2
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                3.9) 

Therefore, the final output of the NN model (3.4) 

can be reformulated as follows: 
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2 2 1 11,  2,  ,  ;   S SR E G W G W G W     b , n , 

p  ( 1,  2,  ,  R   ) represent the variables   of the 

 th neuron of the first, second, and the Sth layer, 

respectively. Finally, according to (3.5), the 

dynamics of the NN model (3.10) can be rewritten 

as the following LDI state-space representation: 

where 

1

 i i
i

         (3.11) 

1

( ) 0, ( ) 1i i
i

h t h t




  , 

( ) ( ) ( )       X t h t E t




  is a positive integer 

and 
iE  is a constant matrix with appropriate 

dimension associated with E


. The LDI state-space 

be further rearepresentation (3.11) can 

follows:             

rranged as 
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wher
iA , 

iB , and 


e 

ikA  are the partitions of 
iE  

corresponding to the partitions of ( )T t .  

3.3 Fuzzy Cont

heme, 

nonline  m ltiple ti -delay (NMTD) system. 

The fuzzy controller takes the follo g fo

roller 

According to the state-feedback control sc

a fuzzy controller is utilized to stabilize the 

ar u me

win rm: 

Control Rule j: IF 
1( )x t  is 

1jM and and  ( )x t is 
jM 

 

            THEN ( )U t F X ( )j t   

where 1,2, ,j u  , and u  is the number of IF-

THEN rules of the fuzzy controller and 

( 1,2, , )jM      are the fuzzy sets. Hence, the 

final output of this fuzzy controller is inferred as 

follows: 
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. In this study,
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3.4 H Control Design via Fuzzy Control 

Stabilizing the closed-loop nonlinear systems 

attenuating the influence of th

disturbance 

and e external 

( )t  on the state variable  are the 

objectives of this article. The influence 

( )X t

of ( )t  will 

. In

order to 

eliminating the influence of 

worsen the performance of fuzzy control system  

guarantee the control performance by 

( )t  is 

problem ystem k, 

st  stem 

a

. Hence, in this wor

 significant 

not only is ability  control s

 in the control s

 the 

achieved but also the 

of fuzzy y
H  control performance is 

satisfied as follows: 

2

0

f ft tT T TX t ZX t dt X PX t t dt    0( ) ( ) (0) (0) ( ) ( )        (3.14)

where 
ft  denotes the terminal time of the control, 

P  is a symm ic positive definite m , etr atrix  is a 

prescribed value which denotes the effect of ( )t  

on ( )X t , and Z  is a positive definite weighting 

matrix. The physical meaning of (3.14) is that the 

effect of ( )t  on ( )X t  must be attenuated below a 

desired level  from the viewpoint of energy [40]. 

4. ROBUSTNESS DESIGN OF FUZZY 

CONTROL AND S BILITY ANALYSIS 

In this section, t

TA

he stability of the nonlinear 

multiple time-delay (NMTD) system is examined 

under the influence of modeling error. 

4.1 Modeling Error 

Substituting (3.13) into (3.1) and (3.12) yields 

the closed-loop NMTD system N  as follows: 
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k k k k i j i k k
k i j k1

( ) ( ( )) ( ) ( ){ ( )}
L

k

e t X t h t h t A X t
 L L

   


       
   

,and ( )t  denotes the modelin error betweeg n the 

closed-loop NMTD system (4.1) and the closed-

loop NN model [(3.12) and (3.13)].  

Suppose that there exists the bo g matrix undin

 such that 
ijY

 
1 1

( ) ( ) ( ) ( )                (4.2)i j i j
i j

t h t h t Y X t
 

 

  

 trajectory , and the bounding matrix for the   ( )X t

i jY  can be descri ed as follows: b

 i j i jY Y                                (4.3) 

is the specified structured bounding

matrix and 

where Y   

 for 1,2, ,i    ; 1, 2, ,j u  1i j  . 

From (4.2) and (4.3), we have 

              
  

1 1 1 1

( )T T
i j i j i j i j

i j i j

t t h t h t Y X t h t h t Y X t
   

   

   ( ) [ ( ) ( ) ( )] [ ( ) ( ) ( )]    

  
1 1 1 1

i j i j i j i j
i j i j   

[YX

( ) ( ) ( )h t h t YX t h
   

  ( ) ( ) ( )t h t YX t
 

                                  (4.4) 

Namely, the modeling error  is bounded by 

the specified structured bo trix . 

( )] [ ( )]Tt YX t

( )t

unding ma Y

Remark 4.1 [40]: The procedures for determining 

i j  

exam

and Y  are described by the following simple 

ple. Assuming that the possible bounds for all 

elements in 
i jY  are 

 1
j

i jY
11 12

 
2 22

 

i i j

i j i j

y y

y y

  
     

                        (4.5     ) 

where 
 

qs qs qs
i jy      for some  

 
q s
i j  with q , s = 1, 

2; i =1, 2,…,  ; and j =1, 2,…, 

One possible description for the bounding 

matrix 

u . 

i jY  is 

 



11 11
 0i j

i j

    12


                  (4.6) 
 22 21 22

 0i j
i j

Y Y
  

      
    

where 
 1 1qq

i j    for 1,2q  . It is noticed that 
i j  

can be chosen by other forms as long as 
 1i j  . 

Then, we check the validity of (4.2) in the 

simulation. I is nof it 

ds for all e

t satisfi

ents in

ed, we can expand the 

boun lem

design procedures until (4.2) holds. 

 of Modeling   

 following, a stability criterion is proposed 

to guarantee the stability of the N

 
 i jY  and repeat the 

4.2 Stability in the Presence

Error 

In the

MTD system N  

described in (4.1). Prior to examination of stability 

of N , a useful concept is given below. 

Lemma 1 [65, 66]: For any A, B nR and for 
n n

have 
12 .T T TA B A GA B G B    

Theorem 1: The NMTD s m 

any 

symmetric positive definite matrix or R, we 

yste

G R 

N  (4.1) is 

uniformly ultimately bounded (UUB) and the 
H control performance of (3.14) can be achieved 

for a prescribed 2 , if there exist symmetric 

positive definite matrices P, 
k  and positive 

constants a, c such that the following inequalities 

hold: 

1 1 2 1 2
   

1 1

[ ] 0
L L

T T T
i j i j i j k iK k ik

k k

D P PD P A A P aY Y a P c P Z    

 

          

for 1,2, ,  ;i   1,2, ,  ;j u   and  ,  k L  .  (4.7

in which 2c   and 
 i j i i jD A B F  . 

Rema

1,  2, a) 

rk 4.2.1: Based on (4.2), the modeling error 

is assumed to be bounde  the specified 

 t

larger modeling error will make Theorem 1 more 

diff

LMI via the following procedure. By introducing 

( )t  d by

structured bounding matrix Y  and then he larger 

modeling error results in the larger Y . Hence, the 

icult to be satisfied.  

Remark 4.2.2: Eq. (4.7a) can be reformulated into 

new variables 1Q P , 
j jK F Q  and 

k kQ Q  , Eq. 

(4.7a) is then rewritten as follows:  

0111 
1 1



 

  QZQIcIaYQaQYAAKBQAB T
L

k

L

k

T
ikkiKkjii

T
iji 

   

(4.7b)                     

KQA TT

for ,  1,  2,  ,  ;  1,  2,  i j    ; and 

ore, based on Schur’ complement [4],  

Eq. (4




1,  2k L ,  ,   . 

Furtherm s 

[64], it is easy to find that the matrix inequality in 

.7 b) is equivalent to the following LMI:  

1

1

1
1

( ) ( ) 0 0 0 0

0 ( ) 0 0 0
0      

0 0 ( ) 0 0

0 0

(4.8)

T

YQ Q Q Q Q

YQ a I

Q Z

Q

Q









 
  
 

  



0 0
10 0 0 0 ( )KQ    

 

for 1,  2,  ,  ,  2,i ;  1  ,  j   ; and ,   

where 

 1,  2,  k L 

1 1

1

.1T
i j i i i j iK k ik

k

A a I c I   



   

Therefore, Theorem 1 can be transformed into a

LMI problem and efficient interior

rithms are now available in Matlab LMI Solve

ver 

(Matlab), the interior-point optimization techniques 

are utilized to compute feasible solutions. Such 

techniques require that the system of LMI 

constraints be strictly feasible, that is, the feasible 

set has a nonempty interior. For feasibility 

problems, the LMI Solver by feasp is shown as 

ws: 

L
T T TQA K B AQ B K A     

n 

-point 

algo r 

to deal with this problem. 

Remark 4.2.3 [67]: In order to verify the feasibility 

of solving the inequalities (4.8) by LMI Sol

follo

Find x  such that the LMI                (4.9a

as 

M

) L(x) 0

inimize t  subject to L(x) t I                      (4.9b)  

                                                 
 feasp is the syntax used to test feasibility of a system 

of LMIs in MATLAB. 

 In this study, Eq. (4.9a) can be represented as Eq. (4.8).  

 



be 
1( )[ ]m q q qt t t    for 1,  2,  ,  m     a d the control 

( )m qt

n

  is applied at the mth subint

From the above, the LMI constraint is always 

strictly feasible in x , t  and the original LMI (4.9a) 

is feasible if and only if the global minimum mint  

of (4.9b) satisfies 0mint . In other words, if 

0mint will make Eq. (4.8) be satisfied and then 

the stability conditions Eq. (4.7a) in Theorem 1 can 

be met.  

e

, shape and am

th

rval. Hence, the 

y litude of dither 

e param

repetition frequenc

can be determined by regulating 

p

eters  , 

( )m qt  and 
m qt( ) . In order to illustrate the 

algorithm, an example of constructing a dither is 

given in Fig. 3.  

 

1 1 1 1 2

2 2 1 2 2

3 3 1 3 2

( ) 0.3,  ( ) 0.7,  ( ) 0.4

( ) 0.5,  ( ) 0.2,  ( ) 0.3

,  ( ) 0.1,  ( ) 0.3

q q q

q q q

q q

t t t

t t t

t t( ) 0.2qt

  

  

  

 

 

 

  

  

 

 

1 1 1 1 2

2

( ) 2 ,  ( ) 1.5 ,  ( )

( )

q q q

q

t a t a t a

t



2 1

3 3 1

,  ( ) ,

 ( ) 2 ,  

q

q q

a t

t a

Remark 4.2.4 : In order to the computational reduce 

den, the positive constants a and c are chosen to 

zzy

fuzzy c

e the NMTD system. 

LYSIS 

bur

be unity in this study. 

Based on Theorem 1, we can synthesize a fuzzy 

controller to stabilize the nonlinear multiple time-

delay (NMTD) system. If the designed fu  

controller cannot stabilize the NMTD system, the 

ontroller and the dither (as an auxiliary of 

the fuzzy controller) are simultaneously introduced 

to stabiliz

5. NN RELAXED SYSTEM AND 

STABILITY ANA

5.1 Dithered Plant and Relaxed Model 

A high frequency signal, commonly called dither 

( )d t , with a finite number   of switching, is 

injected into the NMTD plant N . Thus, the 

dithered plant 
dN  is described as: 

:   ( ) ( ( ),  ( ),d d dN X t f X t U t d ( ))t  

1

( )
k

t


( ( ),  ( ))
L

k d kX t d t     .     (5.1a) 

Th the dither is given 

as follows [52]. The time interval [0, T] is divided 

e algorithm for constructing 

into an arbitrary number   of equal subintervals. 

Th

first 

end of the 

e beginning of the first interval, the end of the 

interval, the end of the second interval and the 

 th interval are denoted by 

0 1 2,  ,   and t t t t , respectively. After dividing every 

interval [
1,  q qt t 
] for q = 0, 1, 2,…, 1   into 

subintervals, the length 

 

of the mth subinterval will 

2 2

3 2

2  ( ) 2

( )

q

q

a t

t a( ) ,t a

a

  


 



 




 

 

  

  

 

ation of constr

mark 5.1.1: According to the above algorithm

 )(t

 

 

 

er. 

,

Fig. 3. Il

the parameters

lustr

m

ucting a dith

 Re

  and )(tm are constant if 

 

burden, the 

periodic signal and then 

the dither is chosen to be a periodic signal. Hence,

duce the computational in order to re

dither is chosen to be a 

)(tm  and (tm ) are respectively changed to m  

and m  in the re

The corresponding

:  ( )r r
m

N X t

mainder of this study

 relaxed m

{ ( ( ),  ( ),m rf X t U t

. 

odel  of  

]: 

rN the

dithered plant (5.1a) is defined as [52

1

 )m   

(








L

k


 wh

1

( ( ),  }k r k mX t   ).t   (5.1b) 

in ich ( )m t  is non-negative and satisfies the 

following conditions: 

a

qt



t

2a

a
2a

1qt  2qt 

 



1
m m

m

0 1,  1   


 for 1,  2,  ,  m     

Remark 5.1.2: The curve ing (5.1b) is 

the uniform limit of curves ( )dX t  satisfying (5.1a). 

That is to say, as the frequency of dither goes to 

infinity, the trajectory ( )dX t  described by the 

ch that of the relaxed 

( ) plying the averaging method to 

the high-frequency dithered term. 

relaxed model  may be viewed as the 

( )rX t  satisfy

dithered plant will approa

model 

Hence, the 

math N

Based on Remark 5.1.2, it is desired to find the 

scalar controls 

dN  

by ap
rX t  

rN

ematical model of the NMTD plant  with a 

dither of high enough frequency. 

m  and 
m  for  such 

 

e UUB 

ber 

1,  2,  ,  m   

stem 

stem ar

that the trajectories of the relaxed sy

If the trajectories of the relaxed sy

are UUB.

and the num   of switching in ( )d t  is chosen to 

be sufficiently large, then

odel and t

 the  is 

approximated b  its corresponding m atical 

modelthe relaxed m ation 

 dithered plant

athem

he approxim

y

improves as   increase

trajectory described by the dithered system and that 

of the relaxed system would be made as close as 

desired, and then the NMT tem is stabilized.  

5.2 NN laxed Model  

In this subsection, the relaxed model 
rN  (of the 

dithered plant 
dN )  approximated by an neural-

network (NN) model. The procedures of 

constructing the NN model for 

s.

D sys

 Re

 is

 are similar to 

th

f 

 Consequently, the 

rN

ose in Section 3. Therefore, they are not repeated 

here. The final output o the closed-loop relaxed 

system 
rN  is described in the following form: 

1 1

( ) { ( ( ),  )} ( )
L

r r k r k
m k

X t f X t t    
 

    


    

 
1 1

( ) ( ){ ( , ) ( )i j i j m m r
i j

h t h t D X t
 

 
 

     

m m

 
1

( , ) ( )} ( ) ( )
L

A X t t t         

for 1,  2,  ,  1,  2,  ,  ;  1,  2,  ,  ;i j k L      and 

1,  2,  ,  m

;  

                                                  (5.2) 

where  

1 1

{ ( ( ),  ( ),  )} with  ( ) ( ) ( ),r m r m j j r
m j

f f X t U t U t h t F X t


    


 

i k m m r k r
k

 ( , ) ( , ) (i j m m i m m i m , )  ,m jD A B      F     

1

( ) ( ) ( ) 

L

r r k r k
k

t e t e t 


     ,in which 

 j
1 1

( ) ( ) ( ){ ( ,  ) ( )}r r i j i m m r
i j

e t f h t h t D X t
 

 
 

  , 

 
1 1 1

( ) { ( ( ),  )}
L L

k r k m k r k m
k m k

e t X t    
  

    


 

5.3 Stability Analysis of the Closed-Loop       

Relaxed System 

Hereafter, we are concerned with th tability of 

the closed-loop relaxed system

e s

 
rN

h

 instead of 

discussing that of the closed-loop dit ered system 

. Hence, the stability criterion of 
rNdN  is 

ented in the following.  

Theorem 2: The 

pres

trajectories of the relaxed system 

H are UUB and the 
rN control performance of 

(3.14) can be , if there 

exist symmetr m

 achieved for a prescribed 

ic positive definite 

2

ices atr
rP , 

rk  

 theand positive consta c  

following inequalities hold: 

nts 
ra , 

rc  su h that

   
1

1

1

( , ) ( , ) ( ( ), )m

                      ( , ) ( , )

L
T

i j m m i j m m r r i j m k  r
k

L
T

r iK m m k r ik m m r
k

D P P D t

P A A P

      

    







   







 

1 2 1 2 ] 0T
r r r r r r r ra Y Y a P c P Z      †, 

for 1,  2,  ,  ;  1,  2,  ,  i j    ; 1,  2,  ,  k L  ; and 

1,  2,  ,  m                                                         (5.3)  

in which 2
rc   and  

 ( , ) ( , ) ( , )i j m m i m m i m m jA B FD        . 

                                                 
e representation of 

rY  is the same as that of the 

structured bounding matrix Y

† Th

 in Eq. (4.3). 

 



3 1 2    , if for any trajectory ( )x t  the conditions Proof: The proof of Theorem 2 can be similarly 

 proof of Theorem 1 t with some extra tuning 

parameters 
m

derived by following the same procedure as that in 

the bu

  and 
m . This proof is len thy, so it 

is not repeated here.  

Remark 5.3.1: By the same procedures as those in 

Remark 4.2.3, Eq. (5.3) ca

1(0)x  , imply: 

(a) stabilit espect to y with r
1 2{ ,  , 0,  ,   }T x  , 

(b) there exists 
1 (0,  ]t T  such that g

n be rewritten as the 

following LMIs: 

     

3( )x t   for all 

1[ ,  ]t t T . 

The relaxed system 
rN  may be stabilized by 

appropriately regulating 
m  and . If 

m rN  is 

and the number 

stable 

  of switching in is chosen to 

be large enough, a high freque

 

ncy

( )d t  

 signal (dither) 

 
1

1

1
1

1

( ) ( ) 0 0 0

0 ( ) 0 0 0

0 0 ( ) 0 0

0

0 0 0 0 ( )

r r r
T

r r r

r

r

k r

Y Q Q Q Q Q

Y Q a I

Q














 










for 1,  2,  ,  ;  1,  2,  ,  ;  1  ,  ;i j k L      and 

0

0 (5.4)

0 0 0

Q Z

Q


















can be constructed through the algorithm proposed

by Steinberg and Kadushin [52] for the nonlinear 

multiple time-delay (NMTD) system N  such that 

the dithered system 
Q

,  2,

1,  2,  ,  m     

where 

1

1 1

( , ) ( , ) ( , )

      ( , ) ( , ) ( , )

      .

T T T
r r i m m j i m m i m m r

T
i m j iK m m k r ik m m

k

r r

Q A K B A Q

B K A A

a I c I

     

1

L

m  

will make Eq. (5.4) be satisfied 

 then the stability conditions Eq. (5.3) in 

Theorem 2 can be met.  

Remark 5.3.3 : In order to reduce the computational 

burden, the positive constants  and  are 

chosen to be unity in this study. 

Prior to discussing the stability of the closed-

 dithered system

    



 

   

 

 

 

Remark 5.3.2: Similarly, on the basis of Remark 

4.2.4, we can solve the inequalities (5.4) via LMI 

Solver. If 0mint  

and

loop

ra rc

 
dN , stability properties i  

finite time interval are defined according to Weiss 

ante [68] as follows.   

Definition 5.3.1: A system is stable with respect to 

the set 

n the

and Inf

1 2{ ,  , 0,  ,   }T x  , 
1 2   if for any 

trajectory ( )x t  the conditions 
1(0)x  , imply 

2( )x t   for [0,  ]t T . 

Definition 5.3.2: A system is contractively stable 

with respect to the set 
1 2 3{ ,  ,  , 0,  ,  T x    } , 

dN  is ap ted by the proxima

relaxed system 
rN  and the approximation improves 

as   beco fo trajectory of mes er. T rlarg here e, the 

dN  and that of 
rN  can be made s desired. as close a

y This fact enables a rigorous prediction of stabilit

of 
dN  by establishing stability of 

rN , provided that 

  is sufficiently large.    

we can deduce the following important 

. 

Hence, 

theorems

rTheorem 3: The state vecto of the dithered  ( )dX t  

system 
dN  is stable with respect to 

1 2{ ,  , 0,  ,   }T X  , if the rela stemxed sy  
rN  is 

sta puble in the sense of Lya nov, provided that   is 

sufficiently large. 

Proof: The algorithm for constructing a dither ( )d t  

given in subsection 5.1 provides a means by which 

the solutions ( )dX t  of the dithered system 
dN  and 

( )rX t  of the relaxed system 
rN  satisfy 

lim ( ) ( ) 0d rX t X t


  . 

Thus, for a certa  in   we have 

1( ) ( )d rX t X t                      (5.5) 

the relaxed s tem If ys
rN  is stable in the sense of 

Lyapunov, i.e. for each 
2 , it is possible to find a   

such that (0)rX  , and we have  

2( )rX t      for . 

Thus from (5.5): 

 0t 

 



( ) ( ) ( ) ( )d d r rX t X t X t X t    

1 2( ) ( ) ( )d r rX t X t X t        

for 0 t T  . 

By taking 
1  ,

2 1 2       stability with respect 

to 
1 2{ ,  ,  0,  ,  T X   } is proven. 

Theorem 4: The state vector ( )dX t  of the dithered 

system 
dN  is contractively s with respect to table 

1 2 3{ ,  ,  , 0,  ,   }T X   , if the trajectories of  

relaxed system 

the

rN  are UUB, provided that   is 

sufficiently large. 

: Let the relaxed system Proof
rN  be UUB. One 

may select a T large enough so at for a time 

, we have in addition to the stability 

 3. According to 

Definition 3.1, we have that the 

th

1 (0,  ]t T

properties proven in Theorem

stability condition 

of relaxed system is ( )X tr   for 
1[ ,  ]t t T .Thus 

from (5.5):  

( ) ( ) ( ) ( )d d r rX X t X t   t X t

1( ) ( rt X t X) ( )d rX t        

Choosing  

for 
1t t T  . 

1  , 
2 1 2     and 

3 1    , 

it follows that the dithered system 
dN  is 

ly table wcontractive s ith respect to 

1 2{ } . 
3,  ,  , 0,  ,   T X 

C

This study presents an effective app

T

ontrollers and dithers. The fuzzy 

Simulatio

ugh. 
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