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Abstract—This study presents a robustness
design of fuzzy control for nonlinear systems
with multiple time delays. First, the neural-
(NN)
approximate the nonlinear multiple time-delay
(NMTD) plant. Then, a linear differential
inclusion (LDI) state-space representation is

network model is employed to

established for the dynamics of the NN model.
According to the LDI state-space representation,
a robustness design of fuzzy control is proposed
to overcome the effect of modeling errors
between the NMTD plant and the NN model.
Next, in terms of Lyapunov’s direct method is
proposed to guarantee that the NMTD system
stabilized.

Subsequently, the stability condition of this

under fuzzy control can be
criterion is reformulated into a linear matrix
inequality (LMI). Based on the LMI, a fuzzy
controller is synthesized to stabilize the NMTD
system and the H™ control performance is
achieved at the same time. If the fuzzy
controller cannot stabilize the NMTD system, a
dither, as an auxiliary of the fuzzy controller, is
simultaneously introduced to stabilize the
NMTD system. If the frequency of dither is high
enough, the trajectory of the dithered system
and that of its corresponding mathematical

model—the relaxed system can be made as close

as desired. This fact enables us to get a rigorous
prediction of stability of the dithered system by
establishing the stability of the relaxed system.

Keywords —Neural network (NN), modeling error,

H” fuzzy control, dither, time delay.
1. INTRODUCTION

In practice, due to the information transmission,
time delays naturally exist in many systems. The
existence of time delays is frequently a source of
instability and encountered in various engineering
systems [1], [2]. Therefore, the problem of stability
analysis of time-delay systems has been one of the
main concerns of researchers wishing to inspect the
properties of such systems. Stability criteria of
time-delay systems so far have been approached in
two main ways according to the dependence upon
the size of delay. One direction is to contrive
stability conditions that do not include information
on the delay, while the other direction includes
methods which take time delay into account. The
former case is often referred to as delay-
independent criteria and generally gives good
algebraic conditions. In particular, some delay-
independent stability conditions and stabilization
approaches have been proposed for nonlinear time-

delay systems. Results are readily available in the
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literature (e.g. [2]-[8] and the references therein).
However, abandonment of information on the size
of time delay necessarily causes conservativeness
of the criteria, especially when the delay is
comparatively small [9].

In the past few years, neural-network (NN)-
based modeling has become an active research
field because of its unique merits in solving
complex nonlinear system identification and
control problems (e.g. [10]-[19] and the references
therein). Neural networks are composed of simple
elements operating in parallel. These elements are
inspired by biological nervous systems. As a result,
we can train an NN to represent a particular
function by adjusting the weights between elements.

Additionally, fuzzy control has attracted a great
deal of attention from both the academic and
industrial communities during the last decade, and
there have been many successful applications [20]-
[29]. Despite the success, it has become evident that
many basic issues remain to be further addressed.
Stability analysis and systematic design are
certainly among the most important issues for fuzzy
control systems. Lately, there have been significant
research efforts devoted to these issues (e.g. [30]-
[38]). All of them, however, neglect the modeling
error between nonlinear system and fuzzy model. In
fact, existence of modeling error may be a potential
source of instability for control designs that have
been based on the assumption that the fuzzy model
exactly matches the nonlinear plant [39]. Recently,
Kiriakidis [39], Chen et al. [40]-[41] and Cao et al.
[42]-[44] have proposed novel approaches to
overcome the influence of modeling error in the
field of model-based fuzzy control for nonlinear
systems.

Not only the stability but also the control

performance of nonlinear systems is important issue

for control design. The H* control problem for
nonlinear systems has received considerable
attention over the last few decades [40]-[42], [45]-
[51]. Hence, a fuzzy control design with guaranteed
control performance has been introduced for
nonlinear systems in this study. However, to the
best of our knowledge, the stabilization problem of
robust H* fuzzy control for nonlinear multiple
time-delay systems remains an open area.
Furthermore, it has been long known that the
injection of a high frequency signal, known as a
dither, into a nonlinear system may improve its
performance (e.g. [52]-[63] and the references
therein). Better performance is viewed as less
distortion in the system output, augmented stability,
and quenching of limit cycles as well as jump
phenomena [56]. A rigorous analysis of stability in
a general nonlinear system with a dither control was
given in Steinberg and Kadushin [52]. On the basis
of the relaxed method, the relaxed system may be
stabilized by regulating appropriately the
parameters of dither. Mossaheb [55] pointed out
that the dither of sufficiently high frequency may
result in output of the relaxed system and that of the
dithered

phenomenon allows us for a rigorous prediction of

system as close as desired. This

the stability of the dithered system by establishing
the stability of the relaxed system, provided the
dither has a high enough frequency. In recent years,
there are also some successful applications of
dithers, Feeny and Moon [59] applied dither to
guench chaos inherent to a stick-slip oscillator and
showed that the discontinuity for the low-frequency
behavior could be effectively removed. Moreover,
lannelli et al. [61]-[62] indicated that discontinuous
nonlinearities of feedback systems could be
narrowed using dithers.

However, to our knowledge, making use of dither
to overcome the influence of modeling error via



neural-network (NN)-based approach has not been
discussed yet. A robustness design of H” fuzzy
control for NMTD systems by dithers is hence

proposed in this study to improve systems’
performance. An NN model is first employed to
approximate the NMTD plant. Then, a linear
(LDI)

representation is established for the dynamics of the

differential inclusion state-space
NN model. According to the LDI state-space
representation, a robustness design of fuzzy control
is proposed to overcome the effect of modeling
errors between the NMTD plant and the NN model.
Next, in terms of Lyapunov’s direct method is
proposed to ensure that the NMTD system under
fuzzy control can be stabilized. Subsequently, the
stability condition of this criterion is reformulated
into a linear matrix inequality (LMI). Based on the
LMI, a fuzzy controller is synthesized to stabilize
the NMTD system and the H” control performance
is achieved at the same time. If the fuzzy controller
cannot stabilize the NMTD system, the fuzzy
controller and the dither (as an auxiliary of the
fuzzy controller) are simultaneously introduced to
stabilize the NMTD system by regulating the
dither’s parameters.

2. PRELIMINARY NOTATIONS

The following notations will be used throughout

this paper.
N : nonlinear multiple time-delay (NMTD) plant
(see (3.1))

N : closed-loop NMTD system (see Fig. 1a.)
N, - dithered plant (see (5.1a))

N, closed-loop dithered system (see Fig. 1b.)
N, - relaxed model of v, (see (5.1b))

N, :closed-loop relaxed system (see Fig. 1c.)
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Fig. 1a. Closed-loop NMTD system .
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Fig. 1b. Closed-loop dithered system v, .
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Fig. 1c. Closed-loop relaxed system v .

3. SYSTEM DESCRIPTION

Consider a nonlinear
(NMTD) plant N described by the following

equation:

multiple time-delay

N : X(z)=f(X(r),U(z))+ipk(X(r—rk»+w(z) (3.1)

where f() and p () are the nonlinear vector-

valued functions which satisfy the assumptions of
continuity and boundedness given in [52], x()
denotes the state vectorz,, (k=1 2, ---, L) are
the time delays and y(¢) is a control input vector
and z(s) denotes the external disturbance with a

known upper bound @ () @ ()]



Definition 3.1 [40]: The solutions of a dynamic
system are said to be uniformly ultimately bounded
(UUB) if there exist positive constants ¢ and «,
and for every ne (0, «) there is a positive constant
t, =1,(h) , such that
X)) <n = |x@)|<z Vizg. (3.2)
In this section, an NN model is first established
to approximate the NMTD plant N. Then, the
dynamics of the NN model is converted into an
LDI state-space representation. Finally, a fuzzy
controller is synthesized to stabilize the NMTD
system.

3.1 Neural-Network (NN) Model

The NMTD plant N is approximated by an NN
model, has S layers with r° (s =1,2,-,5)
neurons for each layer, in which x (r) ~ x,(s) are the
state variables, x, (r-z,) ~ x, (1= 7,), x,(t—1;) ~ x5(t—7)
are the state variables with delays and u, (1) ~ u_(r)
are the input variables.

In order to distinguish among these layers, the
superscripts are used for identifying the layers.
Specifically, we append the number of the layer as
a superscript to the names for each of these
variables. Thus, the weight matrix for the 9 th
layer is written as w . Moreover, it is assumed that
vI (s =12, R0 =1, 2, =, S) is the
net input and 77 (¢)) is the transfer function of the
neuron. Subsequently, the transfer function vector
of the & th layer can be defined as:

W07 O) =765 (0) T650) - T05 O ,0=12-5 (3:3)

where 7(v7 (1))(¢ =1,2,---,R°) s the transfer function
of the ¢th neuron. Then the final output of NN

model can be inferred as follows:

XO =¥ e e e wae) ) (34)
where A0 =[X"(0) X" (t-7,) U" ()]

With X () = [x,(2) x, () -+ x,(0)]" »

X(t-7)=[x(t—7)x(t—7,) xz(t_71)"'x§(t_7k)]r
for k=1,2---,L,
U(e) = [uy (#) uy (2) - 0. ()] -

3.2 Linear Differential Inclusion (LDI)

In order to deal with the stability problem of the
NMTD system, an LDI state-space representation
is established for the dynamics of the NN model
and it can be described as [11, 64]:

. ¢ _
0() = A(a(1))0(), Aa(t)) = Y Iy (a(t) 4, (3.5)
i=1
where ¢ is a positive integer, 4(r) is a vector
signifying the dependence of 4.() on its elements,
A(i=12-,¢) are
0(1) =[0y(t) 05(¢) -+ 0= ()"

constant  matrices and

Furthermore, it is
¢

assumed that £, (a(1)) >0, &, (a(r)) =1. From the
i=1

properties of LDI, without loss of generality, we

can use £(r) instead of 4 (a(z)). In the following, a

procedure is taken to represent the dynamics of the

NN model (3.4) by LDI state-space representation

[11].
To begin with, notice that the output
T(v7 (1)) satisfies
g () <T(7 (1) < g2l (1) , v (6)=20
gl STOI =gl vi(0) <0

where go and go, denote the minimum and the

maximum of the derivative of TOZ()

respectively, and they are given in the following:

A T0L(0)

~ when ¢=1
. vodvi(1)
SA R EI00) ©o
ax# when ¢=2.
v dvi(D)

Subsequently, the min-max matrix G° of the o'th
layer is defined as follows:



g16¢»1 0
0 g, 0 . 0
G’ =diag[g?,1=| 0 0 g7, O : 3.7
: o . 0
0 o 0 g, |

Moreover, based on the interpolation method, the
transfer function 7(,7(r)) can be represented as

follows [11]:

T2 () = (R () g, + R, (g2, () = (ih;’ J0gZ, () (3.8)
¢=1

where the interpolation coefficients 7 (s)<[0,1]

and ih;(t):l- From (3.3) and (3.8), we have

¢=1

YO ) =T {@) TE3@) -~ TO O

= [(thia ()i, i () (2%”% (g5, V5 (@) - (Zh; o 05, Ve O

(3.9)
Therefore, the final output of the NN model (3.4)
can be reformulated as follows:

X() :i
i Zzlzzlh:‘p(f)'"hf,,(t)hfb(t)G‘*W“~~~G WG A(Y)

= =

LG WL [th G we [Zh (G W AOD]-+ D

= S A (OES AG) (3.10)

where

Z »(0) = Zhu,l(t)zhuz (l)"'zh; b, (O

b,=1

z 12, (1) = Zfa,,l<t>2hznz(r)~--2hiz,,R<t>

n=1 m=1 ny=1 ng=1

PWAOEDWHOIILHMOR

p=l n=l

: Z hRs P (t)

=l

i Ha@ =SS SR 012, O, (1),

p=1 n=l b=1
¢=12 - R E =G'W’..¢’w*G'w*and p_, n_,
p. (¢=1 2, ---, R) represent the variables ¢ of the

¢ th neuron of the first, second, and the Sth layer,

respectively. Finally, according to (3.5), the

dynamics of the NN model (3.10) can be rewritten
as the following LDI state-space representation:

X@) = ﬁ h()EA(t) (3.11)

¢
where £, (r)>0,> h(f)=1, ¢ is a positive integer

i=1
and g is a constant matrix with appropriate
dimension associated with £g. The LDI state-space
representation (3.11) can be further rearranged as
follows:

XO=SHOAXO+BUO+ YA, X(-5)} (.12)

where 4, B, and /Tik are the partitions of £

corresponding to the partitions of A” ().

3.3 Fuzzy Controller

According to the state-feedback control scheme,
a fuzzy controller is utilized to stabilize the
nonlinear multiple time-delay (NMTD) system.
The fuzzy controller takes the following form:
Control Rule j: IF x,(r) is a,and---and x,(r)is M ;

THEN U(r)=-F,x (1)

where j=12....u, and » is the number of IF-
THEN rules of the fuzzy controller and
M, (0=12,,05) are the fuzzy sets. Hence, the
final output of this fuzzy controller is inferred as
follows:

SwOFXQ)
U(r)=--— =-2 b (OFX(1) 313

v 7
with w, () = HM,g(xg(t)) (1) = ~w; (), in which
ZW ®)

M ,(x,(2)) s the grade of membership of x,(;) in
M, - In this study, it is also assumed that

wj(t)ZO(jzl,Z,,u) and iwj(l«)>0 fOI‘ a.” t.

Therefore, h(t)20 and ih.(t)zl for all t.

i=1



3.4 H” Control Design via Fuzzy Control

Stabilizing the closed-loop nonlinear systems
and attenuating the influence of the external
disturbance @ (r) on the state variable x(s) are the
objectives of this article. The influence of () will
worsen the performance of fuzzy control system. In
order to guarantee the control performance by
eliminating the influence of &(s) is a significant

problem in the control system. Hence, in this work,

not only is the stability of fuzzy control system

achieved but also the #” control performance is
satisfied as follows:

jo XT(6)ZX ()dt < X" (0)PX (0)+ >° jo o' o(t)d:  (3.14)

where ¢ , denotes the terminal time of the control,

P is a symmetric positive definite matrix, >is a
prescribed value which denotes the effect of &(r)
on x(:), and Z is a positive definite weighting
matrix. The physical meaning of (3.14) is that the
effect of z(r) on x(r) must be attenuated below a
desired level >from the viewpoint of energy [40].
4. ROBUSTNESS DESIGN OF Fuzzy

CONTROL AND STABILITY ANALYSIS

In this section, the stability of the nonlinear
multiple time-delay (NMTD) system is examined
under the influence of modeling error.

4.1 Modeling Error

Substituting (3.13) into (3.1) and (3.12) yields
the closed-loop NMTD system N as follows:

HO= )+ X))+ a0

= Zih Oh,(O{(4 - BF,)X(¢)

[
i=1

Jj=1

+ZL:,7L.kX(t—rk)}+w(t)+A(D(t) (4.1)

where 7(x(t)) = £(X(@), U())

with 1) = —f hy () F, X (1) AD(0) = (1) + ZL:ek (t-7.)

in which o) = 70x ()~ 33 A0k, (04 - BF)X O}

i=1 j=1
ZLlek(t—rk)EZL:pk(X(t—rk))—_Zw)ih,-(t)h,(t){i?LkX(t—rk)}
,and A®(r) denotes the modeling error between the
closed-loop NMTD system (4.1) and the closed-
loop NN model [(3.12) and (3.13)].

Suppose that there exists the bounding matrix
AY, such that

> 3 h @, (OAY, X() (42)

i1 =1

A ()] <

for the trajectory x(;), and the bounding matrix
Ay, can be described as follows:

AY, =K, Y (4.3)

where Y is the specified structured bounding

matrix and H"uHSl for i=12,¢ ; j=12,u.

From (4.2) and (4.3), we have

AV ()AD() <[3 S h (O, (OAY, XOT Y. S h (00h (A, X (1)]

=1 j=1 i=1 j=1

SO I2101 D WAGLHO| o (140

<X [¥X ()] (4.4)
Namely, the modeling error A®(¢) is bounded by
the specified structured bounding matrix v .
Remark 4.1 [40]: The procedures for determining
K, and v are described by the following simple

example. Assuming that the possible bounds for all
elements in AY,, are

PN\

A, { N (4.5)
Ay;; o Ay

where —y# <Ay <y for some > with g, s = 1,

2;i=1,2,..., g;andj=1,2,..., u.

One possible description for the bounding
matrix AY, is



0 K22 21 22

LTy
where —1<x# <1 for g=1,2. It is noticed that

11 11 12
AYIJ{KU OW y }:Ki‘,y (4.6)

can be chosen by other forms as long as H"uHSl'

Then, we check the validity of (4.2) in the
simulation. If it is not satisfied, we can expand the
bounds for all elements in AY, and repeat the

design procedures until (4.2) holds.

4.2 Stability in the Presence of Modeling
Error

In the following, a stability criterion is proposed
to guarantee the stability of the NMTD system N
described in (4.1). Prior to examination of stability
of N, auseful concept is given below.
Lemma 1 [65, 66]: For any A, Be R"and for any
symmetric positive definite matrix G e R™"or R, we
have

—24"B< A"GA+B"GB.

Theorem 1: The NMTD system nN (4.1) is
uniformly ultimately bounded (UUB) and the
H” control performance of (3.14) can be achieved
for a prescribed >* , if there exist symmetric
positive definite matrices P, ,, and positive
constants a, ¢ such that the following inequalities
hold:

L L _ . ’
A, =[D/P+PD, +Y v, +> PA v, A4y P+aY'Y +a PP +c P 1+ Z <0
k=1 k=1

for j=12,.¢:j=12-u; andg=1, 2, .., L. (4.7a)
inwhichc=>* and p, =4 -BF,.

Remark 4.2.1: Based on (4.2), the modeling error
AD(r) is assumed to be bounded by the specified
structured bounding matrix Y and then the larger
modeling error results in the larger Y. Hence, the
larger modeling error will make Theorem 1 more
difficult to be satisfied.

Remark 4.2.2: Eq. (4.7a) can be reformulated into
LMI via the following procedure. By introducing

new variables 9= P, k, = F,0 and i, =0y, 0, Eq.

(4.7a) is then rewritten as follows:
04 KB +40-BK, +i;7k +iZK v Ay +aQY YO+a T+ T+QZ0<0

(4.7b)
fori=12 -, ¢ j=12 -, pu;and k=12, -, L.
Furthermore, based on Schur’s complement [4],
[64], it is easy to find that the matrix inequality in
Eq. (4.7 b) is equivalent to the following LMI:

[T Y0 0 o 0 o |

o) —(a)'1 0 0 0 0
0 0O —(@»* o0 0 o0
0 0 0 ) o 0 <0 (4.8
0 0 0 o .0

Y 0 0 0 0 ~(wo)™]

fori=12 -, ¢;j=12 - pu;and k=1, 2, - L

L p— —
where - r “KTB' +A0-BK,+Y Aoy AL +a 4L
k=1
Therefore, Theorem 1 can be transformed into an

LMI  problem and efficient interior-point
algorithms are now available in Matlab LMI Solver
to deal with this problem.

Remark 4.2.3 [67]: In order to verify the feasibility
of solving the inequalities (4.8) by LMI Solver
(Matlab), the interior-point optimization techniques
are utilized to compute feasible solutions. Such
techniques require that the system of LMI
constraints be strictly feasible, that is, the feasible
set has a nonempty interior. For feasibility

problems, the LMI Solver by feasp& is shown as

follows:

Find x such that the LMI L(x)<0 ¢ (4.9a)
as

Minimize ¢ subject to L(x) <¢x/ (4.9b)

* feasp is the syntax used to test feasibility of a system
of LMIs in MATLAB.

+ In this study, Eq. (4.9a) can be represented as Eq. (4.8).



From the above, the LMI constraint is always
strictly feasible in x, ¢ and the original LMI (4.9a)
is feasible if and only if the global minimum #min
of (4.9b) satisfies tmin<0 In other words, if
tmin <0 will make Eq. (4.8) be satisfied and then
the stability conditions Eq. (4.7a) in Theorem 1 can
be met.

Remark 4.2.4 : In order to reduce the computational
burden, the positive constants a and ¢ are chosen to
be unity in this study.

Based on Theorem 1, we can synthesize a fuzzy
controller to stabilize the nonlinear multiple time-
delay (NMTD) system. If the designed fuzzy
controller cannot stabilize the NMTD system, the
fuzzy controller and the dither (as an auxiliary of
the fuzzy controller) are simultaneously introduced
to stabilize the NMTD system.

5. NN RELAXED SYSTEM AND

STABILITY ANALYSIS

5.1 Dithered Plant and Relaxed Model

A high frequency signal, commonly called dither
d(r) , with a finite number 5 of switching, is
injected into the NMTD plant ¥ . Thus, the
dithered plant w, is described as:

Ny X, 0= £, 0, U0,d0)
3P X, -5, d@)+a(). (512)

The algorithm for constructing the dither is given
as follows [52]. The time interval [0, T] is divided
into an arbitrary number 5 of equal subintervals.
The beginning of the first interval, the end of the
first interval, the end of the second interval and the
end of the 5 th are denoted by
ty, ty, tyand ¢, respectively. After dividing every

interval

interval [tq, tqﬂ] forq=0,1, 2,..., p-1into ¢

subintervals, the length of the mth subinterval will

be a, (t)It,.,~1,] or m=1,2, .-, ¢ and the control
p,(t,) is applied at the mth subinterval. Hence, the
repetition frequency, shape and amplitude of dither
can be determined by regulating the parameters 7,
a,() and g (;) . In order to illustrate the
algorithm, an example of constructing a dither is
given in Fig. 3.
B

r s

a ---- "o

v

—al-1----

a(t,)=03, «lt,,,)=07, a,,)=04
a,(t,)=05 a,(t,,,) =02, a,(t,,,)=0.3

g+l

(1) =02, a,(t,.,)=0.1 a(t,.,)=03

ﬂl(tq) =2a, IBI([(/+1) =1.5a, :Bl(tq+2) =a
5 ([q) =-2a, f, (tq+1) =-a, p, ([q+2) =—2a
ﬂs(tq) =a ﬂ3(tq+1) =2a, ﬂs(tq+2) =-a

Fig. 3. lllustration of constructing a dither.

q+2

Remark 5.1.1: According to the above algorithm,

the parameters «, (f) and f, (¢) are constant if

the dither is chosen to be a periodic signal. Hence,
in order to reduce the computational burden, the
dither is chosen to be a periodic signal and then
a, () and S, (¢) are respectively changed to o,
and B in the remainder of this study.

The corresponding relaxed model . of the

dithered plant (5.1a) is defined as [52]:

N K 0= Y e (X0, UG, )

+ZL:pk(X,,(t—rk), B y+a(). (5.1b)

in which ¢ (r) is non-negative and satisfies the

following conditions:



,
0<a, <1 > a,=1form=12 - ¢

m=1

Remark 5.1.2: The curve x (¢) satisfying (5.1b) is
the uniform limit of curves x, (r) satisfying (5.1a).
That is to say, as the frequency of dither goes to
infinity, the trajectory x () described by the
dithered plant n, will approach that of the relaxed
model x () by applying the averaging method to
the high-frequency dithered term. Hence, the
relaxed model n may be viewed as the
mathematical model of the NMTD plant N with a
dither of high enough frequency.

Based on Remark 5.1.2, it is desired to find the
scalar controls ¢, and g for m=1, 2, ..., ¢ such
that the trajectories of the relaxed system are UUB.
If the trajectories of the relaxed system are UUB
and the number 5 of switching in 4(r) is chosen to
be sufficiently large, then the dithered plant is
approximated by its corresponding mathematical
model-the relaxed model and the approximation
improves as 5 increases. Consequently, the
trajectory described by the dithered system and that
of the relaxed system would be made as close as
desired, and then the NMTD system is stabilized.

5.2 NN Relaxed Model

In this subsection, the relaxed model n (of the
dithered plant y,) is approximated by an neural-
network (NN) model. The procedures of
constructing the NN model for n are similar to
those in Section 3. Therefore, they are not repeated

here. The final output of the closed-loop relaxed
system n s described in the following form:

X.(6)=f+ Zam{ipk (X (t-2,), B} +a(0)
- i/zhl (t)hj (t){Di.i (am ! ﬂm)Xr (t)

1
j=1

£ 4 (@ B)X ()} () + A, ()

for l:]-x 2! Tty (,01]:11 21 Tty ,Lly k:]'l 21 Ty La and
M=, 2 v (5.2)

where
/= Z:a,,,{f(X, (), U@), B,)}with U(t) = —i h(OF,X,(2),
D, (a,,B,)=4/(a,,B,)-B(a,,B,)F;

L - -
AD (1) Eer‘(t)+ze/cr(t_fk) ,in which
=

0 ()=7 -3 S h (O (HD, (@, £,)X, (1)}

=1 j-1

e (-0 = Y a3 A 0-w). A

m=1

5.3 Stability Analysis of the Closed-Loop

Relaxed System
Hereafter, we are concerned with the stability of
the closed-loop relaxed system n instead of

discussing that of the closed-loop dithered system
N, . Hence, the stability criterion of x s

presented in the following.
Theorem 2: The trajectories of the relaxed system

N, are UUB and the H” control performance of

(3.14) can be achieved for a prescribed >?, if there
exist symmetric positive definite matrices p, v,
and positive constants 4 , ¢ such that the

following inequalities hold:

A @B = DL PR+ D, (1)) + 2 v,
+3 Ay BV Ty S P,
1aY'Y +a P?+ePez, <0 T,

fori=12 -, ¢ j=12 -, u; k=12, ---, L; and

m=1 2, -, ¢ (5.3)
in which c, =3 and

D[j(amVﬂm) = A[(am’ﬂm) _Bi(am’ﬁm)F;' '

T The representation of Y, is the same as that of the

structured bounding matrix Y in Eq. (4.3).



Proof: The proof of Theorem 2 can be similarly
derived by following the same procedure as that in
the proof of Theorem 1 but with some extra tuning
parameters o and g . This proof is lengthy, so it
is not repeated here.

Remark 5.3.1: By the same procedures as those in
Remark 4.2.3, Eq. (5.3) can be rewritten as the
following LMIs:

[T, Y0, 0 o 0o 0
r0) —(a)'1 0 0 0 0
0 0 —(z)* 0 0 0
0 0o 0o —wyto o |06
0 0 0 o .0
| Q 0 0 0 0 ()"
fori=1,2 -, ¢, j=12 -, u; k=1, 2, -, L; and
m=1, 2, -,/
where

r,=04/(a,.8,)-K;B/(a,.B,)+4/(a,. B,)0,

B BK, Y A (@ B AL (@ )

+a, ' +e . h
Remark 5.3.2: Similarly, on the basis of Remark
4.2.4, we can solve the inequalities (5.4) via LMI
Solver. If min <0 will make Eq. (5.4) be satisfied
and then the stability conditions Eqg. (5.3) in
Theorem 2 can be met.
Remark 5.3.3 : In order to reduce the computational
burden, the positive constants «, and c, are
chosen to be unity in this study.

Prior to discussing the stability of the closed-
loop dithered system n, stability properties in the
finite time interval are defined according to Weiss
and Infante [68] as follows.

Definition 5.3.1: A system is stable with respect to
the set {p, p,,0, T, ||} . p<p, if for any
trajectory x(s) the conditions [x(0)]| < p, - imply

|x(#)] < p, TOr €0, T1.

Definition 5.3.2: A system is contractively stable
with respect to the set {p, p, p,,0, T, ||},

p, < p, < p,» if fOr any trajectory x(s) the conditions

x(0)]| < 2, imply:
(a) stability with respectto {p,, p,, 0, T,

xH }

(b) there exists ¢ < (0, 77 such that |x(¢)| < p, for all

telt, T]-

The relaxed system N may be stabilized by
appropriately regulating ¢, and g . If y_is stable
and the number 5 of switching in 4(s) is chosen to
be large enough, a high frequency signal (dither)
can be constructed through the algorithm proposed
by Steinberg and Kadushin [52] for the nonlinear

multiple time-delay (NMTD) system n such that
the dithered system x is approximated by the

relaxed system N and the approximation improves
as 5 becomes larger. Therefore, the trajectory of
N, and that of N can be made as close as desired.
This fact enables a rigorous prediction of stability
of N, by establishing stability of v, provided that
n is sufficiently large.

Hence, we can deduce the following important

theoremes.

Theorem 3: The state vector x,(;) of the dithered
system N, is stable with

v P2 0, T,
stable in the sense of Lyapunov, provided that 5 is

respect to
x| 3, if the relaxed system N, is

sufficiently large.

Proof: The algorithm for constructing a dither 4(r)
given in subsection 5.1 provides a means by which
the solutions x,(r) of the dithered system n, and
X, (r) of the relaxed system n satisfy

lim[.x, () - X, ()] =0

Thus, for a certain , we have

lx,(-x.0] <& (5.5)
If the relaxed system n is stable in the sense of
Lyapunov, i.e. for each ¢, it is possible to find a 9
such that |

X,(0)] <, and we have
|x,(0)|<e, forz>0.

Thus from (5.5):



|x, 0 =[x, @) - X,0+X,@)|
<|Xx,0)-X, @)+

X, () <e+e,
for 0<s<T.
By taking p, =9, p, = ¢ +¢&, Stability with respect

0 {p, p,, 0. T,
Theorem 4: The state vector x, () of the dithered

X|| 3 is proven.

system n, is contractively stable with respect to

{01 Py 5, O, T,
relaxed system n are UUB, provided that 5 is

x|}, if the trajectories of the

sufficiently large.
Proof: Let the relaxed system N be UUB. One

may select a T large enough so that for a time
,€(0, 71, we have in addition to the stability
properties proven in Theorem 3. According to

Definition 3.1, we have that the stability condition
of relaxed system is HXr(f)H“ for te[z, 17.Thus

from (5.5):
|x, @) =X, @) - X, @)+ X,
<|x, =X, @)|+|X,. )| <& +e
for , <1<T.
Choosing

=% p,=¢6+¢, and P3=€ +&

it follows that the dithered system n, s
stable with
X[y

contractively
o Py 5 O, T,

respect to

6. CONCLUSIONS

This study presents an effective approach to
stabilize the nonlinear multiple time-delay (NMTD)
systems by fuzzy controllers and dithers. The fuzzy
and the dither

to stabilize the

controller are simultaneously
NMTD system.

Simulation results demonstrate that the fuzzy

introduced

controller can stabilize the NMTD system by
appropriately regulating the parameters of dither
when the dither’s frequency is high enough.
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