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Abstract—This paper proposes a novel 
adaptive decision feedback equalizer (DFE) 
based on self-constructing recurrent fuzzy 
neural network (SRFNN) for quadrature 
amplitude modulation systems. Without the 
prior knowledge of channel characteristics, a 
novel training scheme containing both self-
constructing learning and back-propagation 
algorithms is derived for the SRFNN. The 
proposed DFE is compared with several 
neural network (NN)-based DFEs on a 
nonlinear complex-valued channel. The results 
show that the SRFNN DFE is superior to 
classical NN DFEs in terms of symbol-error 
rate and convergence speed. 
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1. INTRODUCTION  

To further enhance the performance of 
decision feedback equalizer (DFE), many kinds 
of neural networks (NNs), like multilayer 
perceptrons (MLPs) [1-4] and Gaussian basis 
functions (GBFs) [5-7], have been incorporated 
into the DFE. These NN DFEs give a greatly 
improvement on the original DFE for pulse 
amplitude modulation or quadrature amplitude 
modulation (QAM) signals [1-7]. Back-
propagation (BP) algorithm [1-3,5] has been used 
to train the parameters of NNs. For GBFs, there 
is another training method, which is called 
clustering learning (CL) algorithm [6-7].  

The advantage of BP algorithms over the CL 
algorithm is that an additional estimation for 
channel order is not necessary. However, since 
BPs are sensitive to the initial parameters of NNs, 
they are easily dropped into local minima [8] 
which may lead to poor symbol-error rate (SER) 
performance. By searching for the centers of 
signal clusters, CL algorithms [6-7] can make 
parameters of GBFs near to optimal Bayesian 
parameters [6]. The SER performance of GBF 
DFE based on the CL algorithm thus is very close 

to the optimal Bayesian DFE solution. But, the 
additional estimation procedure for the channel 
order [9] before the CL algorithm is a difficult 
part, especially when the channel is nonlinear. 
Moreover, as the channel order or the equalizer 
order increases, the number of nodes in GBFs 
trained with the CL algorithm [6-7] grows 
exponentially, and as a result, so does the 
computation and hardware complexity [9].  

A new GBF termed self-constructing recurrent 
fuzzy NN (SRFNN) [10] has been recently 
applied to channel equalization. Specifically, the 
SRFNN performs both self-constructing learning 
(SL) algorithm and BP algorithm simultaneously 
in the training process without the knowledge of 
channel characteristics. Initially, there are no 
nodes (also called fuzzy rules hereinafter) in the 
SRFNN structure. All of the nodes are generated 
online by the SL algorithm, that not only helps 
automate structure modification but also locates 
good initial parameters for the subsequent BP 
algorithm [10]. The SER of the SRFNN TE thus 
is extremely superior to that of traditional NN 
TEs trained by simple BP algorithm. Moreover, 
the SL can limit the amount of nodes by 
employing a evaluation criterion and hence 
SRFNN results in lower computational costs 
compared to traditional GBFs.  

The problem of traditional NN DFEs is the 
lack of an intelligent scheme for structure 
modification. Although the SRFNN in [10] has 
provided a scheme to automatic node generation, 
it doesn’t take advantage of decision feedback 
symbols to counteract the distortion effects on 
communication systems. Furthermore, the 
drawbacks of classical NN DFEs trained by 
classical learning algorithms would be 
deteriorated sharply in QAM systems. In this 
paper we thus design a novel DFE incorporated 
with the SRFNN for QAM signalling systems. 
Without the prior knowledge of channel 
characteristics, the simulation results show that 
the performance of SRFNN DFE is much 
improved over classical NN DFEs.  
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Fig. 1 Structure of SRFNN DFE 

2. PROPOSED SRFNN DFE 

The M-ary QAM signal can be expressed by a 
set of two-dimensional signals given by  
 ),()()( njsnsns IR +≡  (1) 

where 1−≡j . )(ns R  and )(ns I  exist only for 
a finite number of discrete values. A 4-QAM 
signal sequence, for example, is composed of 

},,,{ 4321 ssss , where 001 jsss += , 002 jsss −= , 

003 jsss +−= , 004 jsss −−=  and 0s  is a 

constant representing the amplitude of the 
symbol. Due to the presence of distortions such 
as linear channel ISI, nonlinear effect of 
demodulator and AWGN, the resulted complex-
valued received signal can be written as follows: 
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where the linear channel is assumed to be a finite 
impulse response filter, )(ah  is the complex-
valued channel coefficients and )(⋅g  is some 
nonlinear function. Both real and imaginary parts 
of AWGN, i.e., )](Re[ nv  and )](Im[ nv , have 

zero means and equal variances 2
vσ . The purpose 

of DFE [1-7] is to recover the transmitted symbol 
)( dns −  from received signals ),([)( nrn ≡fs  

T
fNnr )]1(..., +−  with the aid of decision 

feedback symbols ),...,1(ˆ[)(ˆ −−≡ dnsnbs  
T

bNdns )](ˆ −− , where integers d, Nf and Nb are 

known as the decision delay, feedforward order 
and feedback order, respectively. The notation 

)(ˆ ns  represents the estimated symbol of s(n).  
Suppose there are Nt transmitted symbols that 

influence the decision output of DFE at n: 
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where the value 1++≥ bt NdN  is associated 

with the channel order. If we don’t estimate the 
channel order, the value tN  will be unknown to 

DFE. As )(nts  sequentially goes through the 

channel defined in (2), the feedforward input 
vector )(nfs  is generated. The sequence )(nts  

apparently includes the correct feedback symbols 
T

bNdnsdnsn )](),...,1([)( −−−−≡bs . It is well-

known that the equalization process can be 
viewed as a classification problem in which the 
feedforward input vector set dR  is divided into 

one of the symbol points ms , Mm ~1= . By 

means of the concept of the classification, the set 
of )(nts  can be partitioned into bNM  subsets due 

to )(nbs  involving bNM  feedback states b,is , i = 

1, …, bNM . The set dR  thus can be divided into 
bNM  subsets accordingly: 
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,
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where })()({, ib,bf sss == nnR id
 and bN

s MN = . 

Since each feedback state b,is  occurs 

independently, we propose the DFE established 
with sN  SRFNN-based equalizers as shown in 

Fig. 1. For feedforward input vectors with 
feedback state b,is , the i-th SRFNN can further 

classify subset idR ,  into M subsets based on 

)( dns − : 
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where }))(())(()({)(
, m
m
id sdnsnnR =−∧== ib,bf sss , 

Mm ~1= . From the viewpoint of the symbol-
by-symbol equalization, as receiving a 
feedfoward input vector )(nfs  with b,is  being its 

feedback state at n, the SRFNN DFE only 
activates the i-th SRFNN to equalize this 
feedfoward input vector.  

The detailed formulas in the i-th SRFNN [10] 
for the proposed DFE are described here. We 
redefine the complex vector )(nfs  as 
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For convenience, we define a notation Λ  as: 
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Fig. 2 Influence of the training data size on SER 
performance for various methods at SNR = 26 dB 
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where Λ  can be changed to any kind of notation 
which is complex value of this paper. For a 
feedfoward input vector )(nfs  with b,is , the 

complex-valued output of the SRFNN DFE 
equals to the i-th SRFNN output:   
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where )(, nw ki  is the k-th rule output, )(nK i  is 
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and )(,, npkiϖ  is the recurrent coefficient [10]. 

The learning scheme in [10] is adopted in the 
proposed DFE. There are no rules initially in 
each SRFNN. As a feedforward input vector 

)(nfs  with a feedback state b,is  is received at n, 

the SL and BP algorithms are performed 
simultaneously in the i-th SRFNN. The SL 
algorithm adopts a measure to help decide the 
rule generation. It is the rule evaluation measure 

maxλ  defined as )}({max )2( nOik
k

 [10]. Then the 

evaluation criterion that must be met before a 
new rule is added is 
 minmax λλ ≤ , (9) 

where 10 min << λ  and minλ  is a pre-specified 
threshold. This indicates that no rule in the i-th 

SRFNN can cluster )(nfs , and then a new rule 

must be added to improve the entire performance 
and cover the vector )(nfs . Once a new cluster is 

generated, its initial shape should be assigned: 
 )()(,, nxnm pnewi p=  and σσ =)(,, npnewi ,(10) 

where fNp ~1= , σ  is an empirically pre-

specified complex value and set as 0.7 + j 0.7 in 
this paper. The parameters )(nikpϖ  and )(nwik  

are initialized randomly. 
After the SL algorithm is over in the i-th 

SRFNN, the BP algorithm is adopted 
subsequently to train the parameters of this i-th 
SRFNN. For more detailed derivatives, readers 
may refer to the reference [10]. 

3. SIMULATIONS  

The performance for various DFEs is 
examined by using computer simulations over a 
4-QAM signalling system, which is given by [2,5] 
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The parameters Nf = 2, Nb = 1 and d = 1 are used 
in the following experiments. The experimental 
results are obtained by averaging 500 individual 
runs, each of which involves a different random 
sequence for training and testing. The testing 
period for each individual run has a length of 
1000. The length for the training period will be 
given below. Two NN DFEs trained with BP 
algorithm, i.e., MLP DFE [2] and Takagi-
Sugeno-Kang (TSK) DFE with 16 fuzzy rules [5], 
are simulated for comparisons. TSK is one type 
of GBF. Like the proposed DFE, these two NN 
DFEs trained by BP work without the prior 
knowledge of the channel order. The learning 
rates for various methods are determined to 
achieve their best performances. For MLP DFEs, 
the number of neurons in the first hidden layer, 
the number of neurons in the second hidden layer, 
and the number of neurons in the output layer are 
chosen as 10, 5 and 1, respectively. 

Fig. 2 shows the influence of the training data 
size on the SER performance for various methods 
considered. The proposed DFE using SRFNN 
performs better than the classical NN DFEs 
trained by BP algorithm as iterations are larger 
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than 500. To obtain satisfactory SER results, 
1000 training data size are set hereafter for 
various DFEs in the simulations. 
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Fig. 3 (a) Average numbers of fuzzy rules for different GBF 
DFEs at various SNRs; (b) SER for different NN DFEs at 
various SNRs 
 

Average numbers of fuzzy rules for different 
GBF DFEs at various SNRs are shown in Fig. 3-
(a). SRFNN can intelligently determine the 
numbers of rules needed in computation at 
various SNRs. The comparison of SER curves is 
demonstrated in Fig. 3-(b). The SRFNN DFE 
performs better than classical DFEs at high SNRs.  

4. CONCLUSIONS 

This paper has presented the performance of 
the proposed DFE for QAM signals. When 
SRFNN is applied to the DFE, the DFE structure 
can be intelligently built during the learning 
procedure. Besides, the SRFNN DFE without 
pre-knowing channel characteristics acquires 
better SER performance in a higher convergence 
rate than classical NN DFEs, which also don’t 
need to estimate channel characteristics in 
advance.  
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