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Abstract—This paper proposes a novel to the optimal Bayesian DFE solution. But, the
adaptive decision feedback equalizer (DFE) additional estimation procedure for the channel
based on self-constructing recurrent fuzzy order [9] before the CL algorithm is a difficult
neural network (SRFNN) for quadrature part, especially when the channel is nonlinear.
amplitude modulation systems. Without the Moreover, as the channel order or the equalizer
prior knowledge of channel characteristics, a order increases, the number of nodes in GBFs
novel training scheme containing both self- trained with the CL algorithm [6-7] grows
constructing learning and back-propagation exponentially, and as a result, so does the
algorithms is derived for the SRFNN. The computation and hardware complexity [9].
proposed DFE is compared with several A new GBF termed self-constructing recurrent
neural network (NN)-based DFEs on a fuzzy NN (SRFNN) [10] has been recently
nonlinear complex-valued channel. The results applied to channel equalization. Specifically, the
show that the SRFNN DFE is superior to SRFNN performs both self-constructing learning
classical NN DFEs in terms of symbol-error (SL) algorithm and BP algorithm simultaneously
rate and convergence speed. in the training process without the knowledge of
channel characteristics. Initially, there are no
Keywords—Adaptive equalizers, ISI, MLP, nodes (also called fuzzy rules hereinafter) in the

TSK SRFNN structure. All of the nodes are generated
online by the SL algorithm, that not only helps
1. INTRODUCTION automate structure modification but also locates

good initial parameters for the subsequent BP
To further enhance the performance oflgorithm [10]. The SER of the SRFNN TE thus
decision feedback equalizer (DFE), many kind$ extremely superior to that of traditional NN
of neural networks (NNs), like multilayer TES trained by simple BP algorithm. Moreover,
perceptrons (MLPs) [1-4] and Gaussian basf§e SL can limit the amount of nodes by
functions (GBFs) [5-7], have been incorporate@MPIoying a evaluation criterion and hence
into the DFE. These NN DFEs give a greatlpRFNN results in lower computational costs
improvement on the original DFE for pulsecompared to traditional GBFs. _
amplitude modulation or quadrature amplitude The problem of traditional NN DFEs is the
modulation (QAM) signals [1-7]. Back- lack of an intelligent scheme for structure
propagation (BP) algorithm [1-3,5] has been usdyodification. Although the SRFENN in [10] has

to train the parameters of NNs. For GBFs, thef@ovided a scheme to automatic node generation,
is another training method, which is calledt doesn't take advantage of decision feedback

clustering learning (CL) algorithm [6-7]. symbols to counteract the distortion effects on

The advantage of BP algorithms over the CEOMmunication  systems. Furthermore, the
algorithm is that an additional estimation foidrawbacks of classical NN DFEs trained by
channel order is not necessary. However, sinéissical leaming — algorithms  would  be
BPs are sensitive to the initial parameters of NN§eteriorated sharply in QAM systems. In this
they are easily dropped into local minima [gPaper we thus design a novel DFE incorporated
which may lead to poor symbol-error rate (SERYIth the SRENN for QAM signalling systems.
performance. By searching for the centers d¥ithout the prior knowledge of channel
signal clusters, CL algorithms [6-7] can maké&haracteristics, the simulation results show that
parameters of GBFs near to optimal Bayesidf€ Pperformance of SRFNN DFE is much
parameters [6]. The SER performance of GBimProved over classical NN DFEs.

DFE based on the CL algorithm thus is very close
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s, (n) =[s(n),...,s(n—-d -1),...,

The 1st T’ (3)
r(n) SRENN s(n—=d—=N,),...,s(n—= N, +1)]
D] : : .
r(n-1) : where the valueN,>d+N, +1 is associated
The i-th O(n) | Decision §(n-d) . , .
B SRENN Device with the channel order. If we don’t estimate the

channel order, the valug, will be unknown to
DFE. As s(n) sequentially goes through the
channel defined in (2), the feedforward input

The Ni-th
r(n—Nf +1) SRFNN

vector s, (n) is generated. The sequensgn)
gn-d-N,) n-d-2) |¥n-d-)) g
L@ : 5] 5 apparently includes the correct feedback symbols
- = s, (N =[s(n-d-1),...s(n-d-N,)J" . It is well-
Fig. 1 Structure of SRFNN DFE known that the equalization process can be
viewed as a classification problem in which the
2. PROPOSEDSRFNNDFE feedforward input vector seR, is divided into

one of the symbol points , m=1~M . By

m

means of the concept of the classification, the set
@) of s (n) can be partitioned intM ™ subsets due

The M-ary QAM signal can be expressed by
set of two-dimensional signals given by

s(n) =s%(n) + js' (n),

Q

to s (n) involving M ™ feedback states,,, i =
where j =+/-1. s?(n) ands' (n) exist only for ’
a finite number of discrete values. A 4-QAM " _
signal sequence, for example, is composed & " subsets accordingly:

{s.5;,5,,5,}, Wheres, =5, + s, s, =5, s Rd=LUNRd,w 4)
S, =-S,+js, , S,=-5,—js, and s, is a <N
constant representing the amplitude of thehere R, ={s, (n)\sb(n) =s,} and N, =M .

symb_ol. Due to the presence qf distortions Su%\nce each feedback states. occurs
as linear channel ISI, nonlinear effect of o _
demodulator and AWGN, the resulted complexndependently, we propose the DFE established

valued received signal can be written as followsWwith N, SRFNN-based equalizers as shown in

_ Fig. 1. For feedforward input vectors with
r(n) = g(za:h(a)s(n—a)]+v(n), @ feedback state, , thei-th SRFNN can further

.., M™_ The setR, thus can be divided into

. . . classify subsetR,. into M subsets based on
where the linear channel is assumed to be a flnﬁe y Ry

impulse response filterh(a) is the complex- S(n—d):

valued channel coefficients ang() is some R, = JRT, 5)
nonlinear function. Both real and imaginary parts temeM

of AWGN, i.e., Rejv(n)] and Im[v(n)] , have where Rén:) ={s, (n)‘(so(n) =s,,) 0(s(n—d)=s,)},
zero means and equal variancgs The purpose =1~ . From the viewpoint of the symbol-
of DFE [1-7] is to recover the transmitted symboby-symbol  equalization, as receiving a
s(n—d) from received signalss, (n) =[r(n), feedfoward input vectos, (n) with s being its

..r(n=N, +1)]" with the aid of decision feedback state ah, the SRFNN DFE only

~ ~ activates thei-th SRFNN to equalize this
feedback  symbols §,(n) =[S(n—d-1),..., teedfoward input vector.

§n-d-N,)]", where integersl, Ny and N, are The detailed formulas in theth SRFNN [10]

known as the decision delay, feedforward orddpr the proposed DFE are described here. We
and feedback order, respectively. The notatidigdefine the complex vect, (n) as

§(n) represents the estimated symbo$(oi. [r(n),...r(n=N, +1)]"
Suppose there am, transmitted symbols that _ . (6)
influence the decision output of DFErat =[x (). xy, ()]

For convenience, we define a notatianas:
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‘ SRFNN can clustes, (n), and then a new rule
—+— TSK(BP)-DFE

4 e MLPER)DFE must be added to improve the entire performance
| O SRANNDFE |1 and cover the vectas, (n) . Once a new cluster is

generated, its initial shape should be assigned:
M pewp (M) = X, (N) and O newp(N) =0 ,(10)

log,,(SER)

where p=1~N, , o is an empirically pre-

@ specified complex value and set as 0.j7/0t7 in
this paper. The parameteg, (n) and w, (n)

I are initialized randomly.
00 200 500 00 1000 1200 After the SL algorithm is over in théth
renng daiasee SRFNN, the BP algorithm is adopted
Fig. 2 Influence Qf thetraining data size on SER subsequently to train the parameters of this
performance for various methods at SNR =26 dB SRFNN. For more detailed derivatives, readers
may refer to the reference [10].

Re[A(n)], C= R1 7)
Im[A(n)], C=1 3. SIMULATIONS

where A can be changed to any kind of notation Th ¢ ; . DEEs i

which is complex value of this paper. For a € perlormance for various S IS

feedfoward input vectors, (n) with s, the examined by using computer simulations over a
f bi ? 4-QAM signalling system, which is given by [2,5]

complex-valued output of the SRFNN DFE

equals to the-th SRFENN output:

/\C(n)E{

Ky (n) z(n) = (034-j027)s(n) + (087+ j043 (11)
o(n) = ;Wik(n)oi‘f)(n)- ®)  sn-1+ (034- j027)s(n-2) '
where w,, (n) is the k-th rule output,K,(n) is r(n)=23(n)+0.1zz(n). (12)
the number of existing rules, 0@ (n)= + 005z (n) +v(n)
Hkoi(kl;(n) is the firing strengthQ®) (n) is The parameteris = 2,N, = 1 andd = 1 are used
. o o . , in the following experiments. The experimental
expl - (Xg (N) + @, (M) Oy (N —1) — My, (N)) results are obtained by averaging 500 individual
(g'iEp(n))Z runs, each of which involves a different random
sequence for training and testing. The testing
(x, () + @, (O (N =1) - m} (n))? period for each individual run has a length of
+ (@l (n)? ’ 1000. The length for the training period will be
ikp

given below. Two NN DFEs trained with BP
anda,, ,(n) is the recurrent coefficient [10]. algorithm, i.e., MLP DFE [2] and Takagi-
The learning scheme in [10] is adopted in th&ugeno-Kang (TSK) DFE with 16 fuzzy rules [5],
proposed DFE. There are no rules initially irare simulated for comparisons. TSK is one type
each SRFNN. As a feedforward input vectof GBF. Like the proposed DFE, these two NN

s, (n) with a feedback statg  is received ah, DFEs trained by BP work without the prior

the SL and BP algorithms are performe(lfnow'edge of_ the channel order. The I(_earnlng
rates for various methods are determined to

S|mul_taneously in_thei-th SRFNN. The .SL achieve their best performances. For MLP DFEs,
algorithm adopts a measure to help decide thﬁ . . .
; ; . the number of neurons in the first hidden layer,
rule generation. It is the rule evaluation measutg . )
A defined asmaxO®@(n) [10]. Then the the number of neurons in the second hidden layer,
max » ik : and the number of neurons in the output layer are
evaluation criterion that must be met before ghosen as 10, 5 and 1, respectively.
new rule is added is Fig. 2 shows the influence of the training data
A S A s (9) size on the SER performance for various methods
considered. The proposed DFE using SRFNN

where 0< A, <1 and A, is a pre-specified performs better than the classical NN DFEs
threshold. This indicates that no rule in ik trained by BP algorithm as iterations are larger
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than 500. To obtain satisfactory SER results, [1]
1000 training data size are set hereafter for
various DFEs in the simulations.

(@)

(2]

S S

—+— TSK(BP)-DFE | |
—&— SRFNN-DFE ||

Number of rules
e
N
Ioglo(SER)

(3]

—+— TSK(BP)-DFE

—&— MLP(BP)-DFE

L —A— SRFNN-DFE P

S S S sl v
10 12 14 16 18 20 22 24 26 28 10 12 14 16 18 20 22 24 26 28 [4]
SNR, dB SNR, dB

Fig. 3 (a) Average numbers of fuzzy rules for difet GBF
DFEs at various SNRs; (b) SER for different NN DFds
various SNRs

Average numbers of fuzzy rules for different [5]
GBF DFEs at various SNRs are shown in Fig. 3-
(8. SRFNN can intelligently determine the
numbers of rules needed in computation at
various SNRs. The comparison of SER curves is [6]
demonstrated in Fig. 3-(b). The SRFNN DFE
performs better than classical DFEs at high SNRs.

4. CONCLUSIONS [7]

This paper has presented the performance of
the proposed DFE for QAM signals. When [g]
SRFNN is applied to the DFE, the DFE structure
can be intelligently built during the learning
procedure. Besides, the SRFNN DFE without
pre-knowing channel characteristics acquires [9]
better SER performance in a higher convergence
rate than classical NN DFEs, which also don't
need to estimate channel characteristics in
advance.
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