結合平行干擾消除與統計決策在多輸入多輸出之正 交載波分頻多工的系統改良與分析

江松茶 陳建仁 雲林科技大學 jiangsj@yuntech.edu.twg 9651713@yuntech.edu.tw g9851717@yuntech.edu.tw

雲林科技大學

李佳鴻 雲林科技大學

摘要

多輸入多輸出(MIMO)與正交分頻多工 (OFDM) 技術的結合已被視為未來的無線通 訊技術,如 IEEE 802.11n 與 IEEE 802.16 WiMAX 及 3GPP LTE 系統。但 MIMO-OFDM 系統在移動或多路徑延遲的時變衰退通道環 境下,會破壞子載波間的正交性,這會引起嚴 重的子載波干擾 (ICI), 從而導致系統性能顯 著退化,且若都普勒頻率增加將會變的更加嚴 重。在此,我們提出了一個低複雜性的行平干 擾消除迭代接收器並結合了統計決策作為 ICI 干擾消除,以降低時變衰退通道的影響。

關鍵詞:WiMAX、3GPPLTE、平行干擾消除、 統計決策

1.前言

在近代的通訊系統中,正交分頻多工 (OFDM) 技術已成為新的無線通訊應用中最 熱門之傳輸調變選擇,而使用 OFDM 技術可以 增加頻寬、降低干擾、提高保密性並解決多路 徑衰減等通訊障礙。而多輸入多輸出(MIMO) 合併 OFDM 的系統則大幅提升了系統的傳輸 效能,並且已被採用在未來的高速無線網路技 術,如 IEEE 802.16 WiMAX 與 IEEE 802.11n 及 3GPP LTE 系統裡。

而在 MIMO-OFDM 傳送天線數量大於接 收天線時且傳輸在移動或高延遲的多路徑衰 退通道環境下,會因為都普勒效應(Doppler Shift effect) 而產生載波頻率偏移(Carrier Frequency Offset, CFO),造成子載波間失去它 的正交性,而引起嚴重的子載波間的干擾 (Inter-Carrier Interference, ICI), 使得系統性能 退化,在本研究中我們提出了一個低複雜性的 平行迭代干擾消除 (Iterative Parallel Interference Canceller, Iterative PIC),且在 Iterative PIC 裡加入我們提出的決策統計

(Decision Statics Combining, DSC) 讓相鄰子 載波所帶來的干擾能有效抑制,而在計算複雜 度上也顯著降低。在另一方面 MIMO-OFDM 接收機上的訊號檢測的準確度直接影響了系 統的總性能,所以為了可以更準確的估測高延 遲衰退的通道環境,在傳送端我們加入引導符 元 (Pilot Symbols) 來做通道估測(Channel Estimation, CE), 讓接收端能得到更好的估測 值。

2. 遞迴解碼架構

本節我們要先來討論迴旋編碼 (Convolutional codes) 編碼演算法和最大事後 機率 (maximum a posteriori probability, MAP) 迭代解碼架構,因為迴旋碼、渦輪碼(Turbo codes)及LDPC 已被選為近代通訊最佳的編碼 機制,所以 2.1 節我們將先介紹遞迴系統迴旋 碼演算法和 MAP 解碼演算法。

2.1 遞迴系統迴旋碼

迴旋碼 (convolutional code) 已廣泛應用 在數位傳輸系統上,最大的原因在於編碼設計 簡單及斐特比所提出的解碼演算法。我們大致 上可將迴旋碼分為非系統迴旋碼 (nonsystematic convolutional code:NSC) 及系 統迴旋碼(systematic convolutional code)兩種, 如(1)式所示首先考慮一個碼速率為 1/2、強制 長度為 K 的 NSC, 假設 d_{i} 為在時間 k 的輸入 信號, X_k 及 Y_k 為編碼器輸出的一對編碼字元。

其中

$$X_{k} = \sum_{i=0}^{K-1} g_{1i} d_{k-i} \mod 2, g_{1i} = 0, 1$$
 (1)

以及

$$Y_k = \sum_{i=0}^{K-1} g_{2i} d_{k-i} \mod 2, g_{2i} = 0, 1$$
(2)

式中 m=K-1,為迴旋編碼器正反器的個數。 而 $G1 = \{g_{1i}\}$ 及 $G2 = \{g_{2i}\}$ 為編碼多項式。我們 知道在相同的限制強度下,因為 NSC 有較大的 自由距離 (free distance), 所以在高訊雜比 (SNR)時位元錯誤率的表現比系統迴旋碼要 好,而在低訊雜比則情況相反。遞迴系統迴旋 碼(recursive systematic convolutional code, RSC) 結合了系統迴旋碼及 NSC 的特性。當高碼速率 (大於 2/3),在任何訊雜比的情形下 RSC 效能 比非系統迴旋碼要好。如(2)式所示,碼速率 1/2 的 RSC 是將 NSC 其中一個的編碼字元反饋到 輸入端,而另一個編碼字元則等於輸入端(將 此編碼字元稱為系統位元,另一則為查核位 元)。假設強制長度等於 K,在時間 k 時輸入 一信號 d_k ,則我們可以遞迴運算計算 a_k 為式 (3)

$$a_k = d_k + \sum_{i=1}^{K-1} g_i a_{k-i} \mod 2$$
 (3)

式(3)中假使 $X_k = d_k$ 則 $g_{i=}g_{1i}$,反之假使 $Y_k = d_k$ 則 $g_{i=}g_{2i}$ 。假設輸入信號 d_k 為 0 和 1, 且出現的機率一樣,則 a_i 的統計特性與 d_i 相 同[1]。而圖(1)NSC 及圖(2)RSC 的自由距離一 樣,相同地,其對應於相同編碼字元的編碼狀 態也是一樣地。當然對於相同的輸入信號 d,,, NSC 及 RSC 所輸出的編碼字元是不同的。由 此我們可以說對於相同的編碼多項式G1及G2, BPSK 調變我們定義為(5)式[2]。

NSC 及 RSC 的權重分布 (weight distribution)

是相同的。唯一的不同是輸入信號所對應的編 碼字元。我們可以進一步寫出 RSC 的編碼字元 如下

$$Y_{k} = \sum_{i=0}^{K-1} \gamma_{i} a_{k-i} \mod 2$$
 (4)

$$X_k = d_k$$
 (4) 式中, 係數 γ_i 分別等於 g_{1i} 或 g_{2i}

圖(3)為編解碼系統模組,在由迴旋編碼後使用

$$x_{1}^{\Gamma} = (x_{1}, \dots, x_{t}, \dots, x_{\Gamma})$$
 (5)

這裡的 $x_t = [x_t^{(0)}, x_t^{(1)}, \dots, x_t^{(n-1)}]$, 調變後的序 列 x_1^{Γ} 在經過 AWGN 通道後,接收到的序列為 $r_1^{\Gamma} = (r_1, \dots, r_t, \dots, r_{\Gamma})$,這裡的 $r_t = [r_t^{(0)}, r_t^{(1)}, \dots, r_t^{(n-1)}]$ 。接收器偵測到 的序列為 r_1^{Γ} ,在軟入軟出 (SISO)解碼可以產 生估計輸入信息序列,及估計編碼序列。

2.2.2 對數相似比值 (Log-Likelihood Ratio, LLR) 之概念

在二元 AWGN 通道下,假設傳送的訊息位元 d 大小為±1、x 為由解調器所接收的軟值,由 貝氏定理(Bayes'theorem)我們定義事後機率(a posteriori probability: APP)如下

$$P(d = i/x) = \frac{P(x/d = i)P(d = i)}{P(x)}$$
(6)

其 中 P(x) = P(x/d = -1) P(d = -1) + P(x/d = +1) P(d = +1) (6) 式 中 我 們 將 $P\{d = i/x\}$ 稱為 APP,其為一條件機率。而 $P\{d = i\}$ 則稱之為事前機率。我們利用(6)式來 定義事後機率之對數相似比值(Log-Likelihood Ratio, LLR)。

$$L(d / x) = \log \left[\frac{P(d = +1/x)}{P(d = -1/x)} \right]$$

= $\log \left[\frac{P(x/d = +1)P(d = +1)}{P(x/d = -1)P(d = -1)} \right]$ (7)

所以

$$L(d / x) = \log \left[\frac{P(x/d = +1)}{P(x/d = -1)} \right]$$

$$+\log\left[\frac{P(d=+1)}{P(d=-1)}\right]$$
(8)

或

$$L(d / x) = L(x / d) + L(d)$$
(9)

其中假設接收端由通道接收到信號為 x, d=+1 的機率較高則對數相似比值 L(d/x)將大 於零,反之,則小於零。所以我們知道事後機 率,就可以對 LLR 值來決定原來的訊息 d。 L(x/d)為在訊息位元d=+1或d=-1的情形下, 信號 x 的對數相似比值。而 L(d)為訊息位元 d 的事前對數相似比值 (priori LLR) 或稱為事 前消息(priori information),其資訊提供所考慮 訊息位元的可能值。為了簡化符號,我們將(9) 式改寫為

$$\dot{L}(d) = L_c(x) + L(d) \tag{10}$$

假設我們考慮一1/2 碼速率系統碼,則傳送的 訊息包含了系統位元及查核位元,則對應系統 碼的元件解碼器之軟輸出 LLR 可寫成[1]

$$\Lambda(\hat{d}) = \dot{L}(\hat{d}) + L_e(\hat{d}) \tag{11}$$

其中 $L(\hat{d})$ 為由解調器接收的訊息位元之 LLR, 而 $L_e(\hat{d})$ 。稱為附帶對數相似比值(extrinsic LLR)或附帶消息(extrinsic information),附帶消 息係由元件解碼器所產生。由式(10)、(11),我 們可將元件解碼器的軟輸出寫成

$$\Lambda(\hat{d}) = L_c(x) + L(d) + L_e(\hat{d}) \tag{12}$$

由式(12),對應一系統碼的元件解碼器之 軟輸出可分為三個部分,第一部份 $L_c(x)$ 為在 系統位元d=+1或d=-1的情形下,信號x的 LLR;第二部分L(d)為系統位元的事前消息, 而第三部份為解碼器產生的附帶消息。假設在 離散 AWGN 通道下,這三個資訊在統計上是 互為獨立的。我們可將 $\Lambda(\hat{d})$ 作硬決定來求得 解碼字元如下

$$\hat{d} = \operatorname{sgn}(\Lambda(\hat{d}))$$
 (13)

由式(13),當
$$\Lambda(\hat{d})$$
大於零時,則解碼字元 \hat{d} =+1,反之,則= \hat{d} -1。

2.2.3 軟入軟出解碼器(soft in soft out: SISO)

典型通訊接收機的解調器通常被設計為 可以傳遞軟值給解碼器,使解碼器的效能能夠 提昇,若解碼器的輸出也是一個軟值的話,則 這樣的解碼器通常稱為"軟入軟出"(soft in soft out: SISO)解碼器。而迴旋碼便是使用 SISO 解 碼器作遞回運算以達更好的效能。由式(12), 我們可以將解碼器的軟輸出分為三個部分,且 三個部分互為獨立事件,因此我們把 L(d) 及 $L_c(x)$ 作為解碼器的輸入,而 $L_e(\hat{d})$ 則由解碼 器所產生,如圖(4)所示, SISO 解碼器有兩個 輸出及兩個輸入。其中軟輸出 LLR 可由式(12) 求得。對一系統碼而言 $L_c(x)$ 包含了查核位元 及系統位元的軟值。

圖(4)SISO 解碼器

接下來我們將介紹 SISO 解碼的方式,主要可以分為三種:

(1)最大事後機率演算法則(maximum a posteriori probability algorithm: MAP);
 (2)對數化最大事後機率演算法(Log-MAP)。
 (3)軟入軟出斐特比演算法則(soft in soft out Viterbi algorithm, SOVA)。

其中 MAP 為最佳的解碼方式;而 Log-MAP 為MAP 的簡化與MAP 相較SOVA 解碼架構 較為簡單,但其效能較差,其編碼增益約損失 0.5dB 左右。我們在下一節將只針對 MAP 法則 作介紹;

2.2.4 MAP 演算法

MAP (Maximum a posteriori probability)演算 法是由 Bahl、Cocke、Jelinik 及 Raviv 四人在 1974 年提出[3],為了紀念他們的貢獻,所以又 稱為 BCJR 演算法。Berrou、Glavieuxr 以及 Thitimajshima 提出了使用 MAP 演算法應用於 遞迴式解碼 (iterative decoding)的方法[1]。我 們將推導適用於系統迴旋碼的 MAP 演算法則。 接下來我們先探討解碼器的軟入軟出 (Soft In Soft Out, SISO)的 MAP 演算法,在 MAP 演算 法中要得到最小的錯誤機率要由軟輸出 (Soft Output)去估測 (A Posteriori Probability, APP) 值,在這裡我們假設接收到的訊號序列為 r, 解碼計算使用對數相似比值 (Log-Likelihood Ratio, LLR)表示為式(14)

$$\Lambda(u_{t}) = \log \frac{P(u_{t} = 1 | r_{1}^{\Gamma})}{P(u_{t} = 0 | r_{1}^{\Gamma})}$$
(14)

在硬決策(Hard decision)後的位元結果表示 為

$$\tilde{u}_{t} = \begin{cases} 1 & if \quad \Lambda(u_{t}) \ge 0 \\ 0 & if \quad \Lambda(u_{t}) < 0 \end{cases}$$
(15)

傳送訊號的機率表示為式(16)

$$P(r_n^{\Gamma} \mid x_n^{\Gamma}) = \prod_{t=1}^{\Gamma} R(r_t \mid x_t)$$
(16)

$$R(r_t \mid x_t) = \prod_{i=0}^{n-1} p(r_t^{(i)} \mid x_t^{(i)})$$
(17)

在 AWGN 的無記憶的通道環境裡,變異數 (variance) 為 σ_w^2 我們可以從高斯分佈可得

$$p(r_t^{(i)} \mid x_t^{(i)} = j) = \frac{1}{\sqrt{2}\sigma_w} e^{-\frac{(r_t^{(i)} - j)^2}{2\sigma_w^2}}$$

$$, j \in \{0, 1\}$$
(18)

APP 的訊息位元可以從式(19)計算得到

$$P(u_{t} = j | r_{1}^{\Gamma}) = \sum_{(s', s) \in B_{t}^{j}} P(S_{t-1} = s', S_{t} = s | r_{1}^{\Gamma})$$
$$= \sum_{(s', s) \in B_{t}^{j}} \frac{P(S_{t-1} = s', S_{t} = s, r_{1}^{\Gamma})}{P(r_{1}^{\Gamma})}$$
(19)

 $0 \le s', s \le M_s - 1$ $\not\equiv$ trellis of $\not\equiv W_t$ (states), B_t^j 是設定傳送訊號由 $s' \rightarrow s$ 輸入的位元 $u_t = j$ 。

我們定義 $\varphi_t = (s', s) = P(S_{t-1} = s', S_t = s, r_1')$, 所以LLR 就可以表示為式(20)

$$\Lambda(u_t) = \log \frac{\sum_{(s,s)\in B_t^1} \varphi_t(s,s)}{\sum_{(s,s)\in B_t^0} \varphi_t(s,s)}$$
(20)

 $\varphi_{t} = (s', s)$ 的聯合機率 (joint probability), 假 設通道為沒有記憶的通道 (memoryless channel, 所以 joint probability $\varphi_t = (s, s) =$

 $\alpha_t(s) \cdot \beta_t(s) \cdot \gamma_t(s,s)$ 可以寫成三個獨立的機 率相乘,我們可以定義此三個獨立的機率如式 (21-23)

$$\alpha_t(s) = P(S_t = s, r_1^t)$$
(21)

 $\beta_{t}(s)$ 為逆向遞迴值定義如式(22)

$$\beta_t(s) = P(r_{t+1}^{\Gamma} \mid S_t = s)$$
(22)

 $\gamma(s,s)$ 為分枝的傳道機率,定義如式(23)

$$\gamma^{j}(s',s) = P(u_{t} = j, S_{t} = s, r_{t} | S_{t-1} = s')$$
 (23)

LLR 可以被表示為式(24)

$$\Lambda(u_{t}) = \log \frac{\sum_{(s',s)\in B_{t}^{1}} \alpha_{t-1}(s')\gamma^{1}(s',s)\beta_{t}(s)}{\sum_{(s',s)\in B_{t}^{0}} \alpha_{t-1}(s')\gamma^{0}(s',s)\beta_{t}(s)}$$
(24)

由式(21)-式(23)的定義我們可以寫成下式

$$\gamma_{t}^{j}(s',s) = \begin{cases} p_{t}(j) \exp\left(-\frac{\sum_{i=0}^{n-1} (r_{t}^{i} - x_{t,j}^{i}(s))^{2}}{2\sigma_{w}^{2}}\right) & for \quad (s' \mid s) \in B_{t}^{j} \\ 0 & otherwise \end{cases}$$
(25)

由式(20)我們知道要求出 $\Lambda(u_t)$ 值必須要計算 這裡的 $p_t(j) \neq u_t = j, j \in \{0,1\}$ 和 $x_{t,j}^i(s)$ 編碼 器的輸出的事前機率 (priori probability)。

這裡的 $\alpha_t(s)$ 可以寫成式(26)

$$\alpha_{t}(s) = P(S_{t} = s, r_{1}^{r})$$

$$= \sum_{s=0}^{M_{s}-1} \alpha_{t-1}(s') \sum_{j \in \{0,1\}} \gamma_{t}^{j}(s', s)$$
(26)

我們設定初始條件
$$\alpha_0(0) = 1 \alpha_0(s) = 0, s \neq 0$$

 $\beta_t(s)$ 我們就可以寫成式(27)

$$\beta_{t}(s) = P(r_{t+1}^{r} | S_{t} = s)$$

$$= \sum_{s=0}^{M_{s}-1} \beta_{t+1}(s') \sum_{j \in \{0,1\}} \gamma_{t+1}^{j}(s,s')$$
(27)

由此推導我們就可得到 joint probability 的結果。

3.通道估测

在寬頻行動通訊系統中由於通道是頻率 選擇性和時變性的通道,則對於OFDM 信號作 動態或即時的通道估測是必要的,而且資料傳 輸的路徑也不是只有一條,而是多重路徑。多 重路徑主要原因是因為傳送端與接收端之間 常會受到建築物、樹木等等物體所阻擋,而且 無論是否有直線通訊通道,電波都會因為外力 因素使得電波造成反射、繞射與散射,這些反 射、繞射與散射現象都會產生訊號的衰減,使 得訊號恢復時產生錯誤。因此,為了克服通道 衰落及時間或取樣頻率有小幅偏差的影響,我 們必需要做通道估測來得到通道脈衝響應 (Channel Impulse Response) [4][5]。

3.1 MIMO 通道估测

首先,先設計在不同發射天線下的同步引 導符元(synchronize pilot symbols)設計。我 們假設第一根傳送天線所發射在頻域上的同 步引導符元為式(28)

$$P_1 = \left[P_1(0), P_1(1) \dots P_1(N-1) \right]$$
(28)

$$P_{1}(N) = Ae^{j2\pi(N)^{2}/NFFT}$$
(29)

式(28)中 A 為引導符元的振幅大小,N 為 OFDM 的子載波數,NFFT 為傅利葉的總數。 其它傳送天線所發射的同步引導符元,則是對 第一根傳送天線所發射的引導符元在頻域上 做相位旋轉,第 i 根傳送天線頻域訊號可以表 示為式(29),M 為引導符元的個數。

$$P_i(N) = A e^{j2\pi (N + M^*(i-1)/N_t)^2/NFFT}$$
(30)

$$P_i = [P_i(0), P_i(1) \dots P_i(N-1)]$$
(31)

則經過 IFFT 後,在第 i 根傳送天線的時 域上訊號 P_i 相對呈現循環移動, i·M 的時間長。 如此一來各天線可視為傳送同樣的資料而延 遲在不同的時間。式(31)中的 P_i,經過通道之 後,接收端作 OFDM 解調,可將接收到的訊號 表示成:

$$P_{i}(N) = Ae^{j2\pi(N+M^{*(i-1)/N_{t}})^{2}/NFFT}$$

$$i = 2,3.....N_{t}$$
(32)

$$P_{i} = \left[P_{i}(0), P_{i}(1)..., P_{i}(N-1)\right]$$
(33)

則經過 IFFT 後,在第 i 根傳送天線的時 域上訊號 P_i 相對呈現循環移動, i·M 的時間長。 如此一來各天線可視為傳送同樣的資料而延 遲在不同的時間。式(31)中的 P_i,經過通道之 後,接收端作 OFDM 解調,可將接收到的訊號 表示成:

$$R_{j}[n,k] = H_{1,j}[n,k] \cdot P_{1}[k] + H_{2,j}[n,k] \cdot P_{2} +$$

$$+H_{i,j}[n,k] \cdot P_{N_{t}} + W[n,k]$$
(34)

i,j:為第i根傳送天線以及第j根接收天線
 n,k:為在第n個時間上的第k個子載波
 P:為傳送之 Pilot

其中
$$H_{i}$$
為第i根傳輸天線及第j根接收

天線之通道頻率響, P₁、P₂及P_N,為第一根傳送天線和第二根及第 Nt 根的引導符元, W 為 白高斯雜訊。

3.2 虛擬反矩陣 (Pseudo Inverse)

本節將介紹新的通道估測方法,若將所接 收之頻域訊號 R 表示為式(35),若以 2x2 的天 線陣列為列,將 pilot 訊號以對角矩陣之方式排 列如式(36),其中 i 為傳送天線數, j 為傳送天 線數。

$$R_{j}[n,k] = \sum_{i} X_{i}[k]H_{i,j}[n,k]$$
$$= P[k]^{*}H_{j}[n.k]$$
(35)

$$\hat{P} = \left[dig(P_1), dig(P_2), \dots dig(P_{N_t}) \right] \quad (36)$$

$$H_{j}[n,k] = [H_{1,j}[n,k], H_{2,j}[n,k]]$$
(37)

利用虛擬反矩陣 (Pseudo Inverse) 經由式 (38)將通道相關值表示為 \hat{H}_l ,其中 P^+ 為虛擬 反矩陣之運算如式(39)[6]。

$$\hat{H}_{l}[n,k] = P^{+}R[n,k]$$
 (38)

$$P^{+} = (\hat{P}^{H} \cdot \hat{P})^{-1} \cdot \hat{P}^{H}$$
(39)

4.MIMO-OFDM 迭代干擾消除系統

本節使用 MIMO-OFDM 之模型,首先在 MIMO-OFDM 環境下,傳送端的資料先經過編 碼和調變再經由 OFDM 調變後傳送至發射天 線,此過程中已加入 CP 與 Pilot。

4.1 最小均方誤差與干擾消除相結合 (MMSE-IC)

在 MMSE 訊號偵測演算法中,如式(40), 傳送向量 x 的期望值和接收訊號w^Hr 相結合, 可將誤差減到最小值[7][8]。

$$\min E(x - w^H r)^2 \tag{40}$$

W 是一個 $n_R \times n_T$ 的通道矩陣

$$w^{H} = [H^{H}H + \sigma^{2}I_{nT}]^{-1}H^{H}$$
(41)

 σ^2 是雜訊的變異量 I_{nT} 是一個 $n_R \times n_T$ 的單位 矩陣,第i根傳送天線在第t時間訊號符元偵 測定義為式(42)

$$y_t^i = w_i^H r \tag{42}$$

 w_i^H 是在通道矩陣 w^H 的第 i 列在 n_R 的組合裡, 我們估測在第 i 根天線的訊號符元,定義為 \hat{x}_t^i , 經由 y_t^i 的硬決策 (hard decision) 可以得到式 (43)

$$\hat{x}_t^i = q(y_t^i) \tag{43}$$

4.2 平行迭代干擾消除器

在多天線的訊號偵測過程中面臨了許多 的挑戰;特別是為了設計出一個低複雜的檢測 器,能有效地去除多重存取干擾(Multiple Access Interference, MAI),並且接近無干擾界 限。而迭代(iterative)的處理原則是給了檢測 器與解碼器降低干擾一個改善方法。在裡說明 了,迭代平行干擾消除接收器硬體較簡單和可 以大幅降低干擾且增進系統的性能[9][10]。

在 MIMO 系統的傳輸裡,不同的發射天 線是被傳送在未知的通道環境裡,所以在發射 端需儘可能給予所有發送天線的傳輸能量及 給予接收端完美的通道狀態資訊(channel state information, CSI),那麼我們可以利用估測出的 通道變異數的權重(weighting),在透過權重 的分配給予不同的發射天線組合,可以使得接 收器的性能大幅改善,降低環境所產生的干 擾。

4.2.1 PIC-STD 迭代偵測

當 OFDM 系統經過第一次迭代, PIC detector 將相等於匹對濾波器 (matched filter) 方塊如圖(5)[11]

經由 PIC detector 輸出結果可表示為式(44)。

$$Y_{p}^{1} = \left[Y_{p}^{1}(0), Y_{p}^{1}(1), ..., Y_{p}^{1}(N-1)\right]^{T}$$
(44)

上式可以由式(45)得到。

$$Y_p^1 = h_p^H R \tag{45}$$

其中 h_p^H 為矩陣 H^H 的第p列, H^H 可以表示為式(46)。

$$H^{H} = \begin{pmatrix} H_{1,1}^{H} & \cdots & H_{1,M_{R}}^{H} \\ \vdots & \ddots & \vdots \\ H_{M_{T},1}^{H} & \cdots & H_{M_{T},M_{R}}^{H} \end{pmatrix}$$
(46)

經過解碼器後,決策特性將對傳輸訊號產 生軟估測。在第二次及最後的迭代,從解碼器 所產生的軟輸出將使用在更新 PIC detector 及 決策組成。其中第 P 個傳送天線,第 k 次迭代 表示可寫成式(47) [12]。

$$Y_{p}^{k} = h_{p}^{H} \left(R - H \underline{\hat{X}}^{k-1} \right)$$

$$\tag{47}$$

其中 \hat{X}^{k-1} 為第k-1次迭代時傳送符元估 測向量,其中第p個傳輸天線元素設定為0, 可以表示為式(48)。

$$\underline{\hat{X}}^{k-1} = \left[\hat{X}_{1}^{k-1}, ..., \hat{X}_{p-1}^{k-1}, 0, \hat{X}_{p+1}^{k-1}, ..., \hat{X}_{M_{T}}^{k-1} \right]^{T}$$
(48)

從向量Y^k 中第 p 個傳輸天線的偵測輸出, 使用交錯及經過 p 個解碼器。其軟估測及解碼 輸出為式(49)

$$\hat{X}_{p}^{k}(n) = 1 \cdot P(X_{p}^{k}(n)) = 1 | Y_{p}^{k})$$

$$+ \left(-1\right) \cdot P\left(X_{p}^{k}\left(n\right) = -1 \mid Y_{p}^{k}\right)$$

$$\tag{49}$$

其中 Y_n^k 為傳送天線 $p \in P(X_n^k(n) = j | Y_n^k)$ 偵 測器輸出向量, j=1,-1,為第k 次迭代的事 後機率。令 $\lambda_p^k(n)$ 為第k次迭代的 log-likelihood rations (LLR), 表示為式(50)。

$$\lambda_{p}^{k}\left(n\right) = \log \frac{P\left(X_{p}^{k}\left(n\right) = 1 \mid Y_{p}^{k}\right)}{P\left(X_{p}^{k}\left(n\right) = -1 \mid Y_{p}^{k}\right)}$$
(50)

因此,事後機率 $P(X_p^k(n) = j | Y_p^k), j = 1, -1,$ 其中 $v_p(n)$ 為向量 v_p 的元素,可以從 因此可代入 $\lambda_p^k(n)$ 計算 $P(X_p^k(n) = j | Y_p^k)$,可 $v_p = diag$ 得得到。由式(55)我們可以得到 得式(51)(52)。

$$P\left(X_{p}^{k}\left(n\right)=1 \mid Y_{p}^{k}\right)=\frac{e^{\lambda_{p}^{k}(n)}}{1+e^{\lambda_{p}^{k}(n)}}$$
(51)

$$P(X_{p}^{k}(n) = -1 | Y_{p}^{k}) = \frac{1}{1 + e^{\lambda_{p}^{k}(n)}}$$
(52)

結合式(50)(51)(52),可得式(53)。

$$\hat{X}_{p}^{k}(n) = \frac{e^{\lambda_{p}^{k}(n)} - 1}{e^{\lambda_{p}^{k}(n)} + 1}$$
(53)

4.2.2 PIC-DSC 迭代偵測

在計算(47)式時解碼器使用兩個輸入。第 一個輸入是決策特性(decision statistic) $Y_p^k(n)$, $Y_{p}^{k}(n)$ 由 $X_{p}(n)$ 所得到。第二個輸入是傳送訊 號 $X_n(n)$ 的事前機率,可由下式(54)得到。

$$p_{n}\left(X_{p}\left(n\right)=l\right)=\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{\left(Y_{p}^{k}\left(n\right)-l_{\mu_{p}}\right)^{2}}{2\sigma^{2}}}, l=1,-1$$
(54)

其中μ,為接收器在經過匹配濾波器 (match filter)之後的振幅之平均值,由式(55) 表示。

$$\mu_{p} = \frac{1}{N} \sum_{n=0}^{N-1} v_{p}(n)$$
(55)

變異數如式(56)

$$(\sigma_p^k)^2 = \frac{1}{N} \sum_{n=0}^{N-1} (Y_p^k(n) - \mu_p(n) X_p^{k-1}(n))^2$$
(56)

解調器輸出端第k個迭代第 p 個傳輸天 線的 DSC 模組效能曲線的線性組合,利用 $Y_n^k(n)$ 來表示, DSC 輸出形式與前一次迭代在 同一層,表示為 $Y_{p,c}^{k-1}(n)$ 。DSC 的輸出,表示 為 $Y_{p,c}^{k}(n)$,由式(57)得到。

$$Y_{p,c}^{k}(n) = \frac{\left(\sigma_{p,c}^{k-1}\right)^{2}}{\left(\sigma_{p,c}^{k-1}\right)^{2} + \left(\sigma_{p}^{k}\right)^{2}} Y_{p}^{k}(n), i > 1$$
$$+ \frac{\left(\sigma_{p}^{k}\right)^{2}}{\left(\sigma_{p}^{k}\right)^{2} + \left(\sigma_{p,c}^{k-1}\right)^{2}} Y_{p,k}^{k-1}(n)$$
(57)

如圖(6)我們在 PIC 偵測後加入 DSC 如圖所 示。

圖(6)PIC-DSC 架構圖

5. 系統架構與模擬分析

依據前面幾章所提的概念與技術之下,本 章將建立系統架構,在發送端是以 OFDM 為訊 號的傳輸架構且在 OFDM 系統裡加入 Pilot 做 通道估测;天線模組上利用不同的發射天線數 在大於或小於接收天線數做為天線模組,接收 器的部份我們使用 PIC-DSC 來達到降低 ICI 之 目的。

5.1 系統架構

圖(7)為 MIMO-OFDM 發射端的系統架構 圖,我們假設有 N 筆不同的訊息 (Source), 先由碼率為 1/2 的迴旋碼編碼器進行編碼,再 進行交錯 (Interlever) 調變由 BPSK 來進行調 變經過空間多工 (Spatial Multiplexing),發射 天線數為N,之後加入Pilot 讓接收端可以做通 道估測,最後進行 OFDM 調變再加上 CP 來保 護所要傳送的訊號。

5.2 相關實驗參數

我們設定 OFDM 的模擬參數如表(1)所示, 子載波數為 128、CP 長度為 10 來進行模擬而 其它的模擬參數如表(2)所示,在此我們假設 CIR 的長度為9,所以我們定義為當 CP 長度大 於CIR 長度時我們可以忽略 ISI 所帶來的干擾, 我們只針對 ICI 所產生的干擾因素進行模擬分 析。

表1OFDM 系統參數

Simulation parameter	Value
FFT size	128
Subcarrier	128
Cyclic prefix	10
OFDM symbol duration (Ts)	6.4us
GI symbol duration (Tg)	0.5us
T=Ts+Tg	6.9us

表2其它參數

Simulation parameter	Value
Channel code	Convolution code
Code rate	1/2
Modulation	BPSK
Pilot type	Block type
Pilot distance	1/6 (pilot/data)
CIR	9
Max Doppler freq	50Hz
МІМО Туре	Spatial Multiplexing

4.3 模擬分析

這一章節將介紹迭代接收機的效能與模 擬結果分析,將針對發射天線大於或等於接收 天線模組,分析發射天線所產生的干擾問題, 且利用本論文所提出的 PIC-DSC 演算法將干 擾消除,且 Pilot 型態使用 Block type 來估測通 道脈波響應,在接下來將通道環境設定在最大 都普勒頻率為 50Hz 的移動通道上分析,平行 干擾消除接收機在有加入 DSC 是否能比沒有 加 DSC 演算法在每一次迭代上的總性能較 佳 。

圖(8)為 MIMO-OFDM 在發射天線數為 2,接 收天線數為2的系統下的位元錯誤率圖,由圖 中模擬結果可以看出迭代的效能,其接收天線 數是符合等於或大於傳送天線數,因此在這狀 態下是不須要再做迭代的,再來我們分析接收 器系統裡有加入 DSC 演算法和沒有加入 DSC 演算法進行分析,由圖(8)中可以看出第一次迭 代結果中,有加 DSC 和沒有加 DSC 演算法的 位元錯誤率效能會相等,符合了前一章所定義 的公式而得到的結果相符合,而在第二代迭代 之後有加 DSC 演算法的效能只略優於沒有加 DSC 演算法,那是因為發射天線數和接收天線 數相等,所以通道所估出的變異數並不會有太 大的差異,在經由權重的分配下其得到的結果 會與沒有加 DSC 演算法比較來不相上下,再來 我們分析增加發射天線數量後的模擬結果。

圖 $(8)M_T = 4$ 、 $M_R = 2$ 之位元錯誤率

圖(8)圖(11)為接收天線數比發射天線數的比值 為 2/4、4/6、2/6 及 2/8,由圖中可以看出加入 DSC 演算法中,每一次迭代的位元錯誤率比均 與沒有加入 DSC 系統相效能要佳,我們可以由 天線數的比值可知,其比值越小影響每一次迭 代的錯誤率則越大,我們分析比值在 2/6 及 2/8 這兩個比值,其沒有加入 DSC 的系統其經過多 次迭代後接收端的位元錯誤率相當的差,沒有 獲得明顯的改善,而系統有加入 DSC 演算法後 在圖中可看出每一次迭代的結果都比沒有加入 DSC 演算法來的較佳,証明可以獲得有效的改善效能。

圖 $(9)M_T = 6$ 、 $M_R = 4$ 之位元錯誤率

圖 $(10)M_T = 6$ 、 $M_R = 2$ 之位元錯誤率

6. 結論

在本論文的模擬中利用 MIMO 的空間多工 的特性增加了通道容量,且在接收端利用多次 迭代的原理使得干擾能降到最低,雖然在訊號 還原的時間上會佔用許多,但以硬體成本的角 度來講肯定是大幅降低了天線成本,所以以成 本的角度來討論是很值得嘗試。

論文裡若接收天線數比傳送天線數的比值 很低時,我們以模擬 2/6 及 2/8 比值為例,在 原始的系統中接收機經過了 8 次的迭代後其 BER 與第1次迭代後的 BER,由模擬中可以証 明沒有很大的改善,所以使用 DSC 演算法,由 模擬可以驗證能夠改善系統的性能且在每一 次迭代都能改善 BER。

- Berrou, C, Glavieux, A., and Thitimajshima, P., "Near Shannon limit error-correcting coding and decoding: Turbo-codes," IEEE International Conference on Communications, ICC '93, Geneva. vol. 2, 1993, pp. 1064 –1070.
- [2] TAO UANG ,"Performance Of Iterative And Detection Decoding For MIMO-BICM System" A thesis presented to the University of New South Wales in ful-lment of thethesis requirement for the of Master by Research degree in Telecommunication Engineering Kensington, Sydney, Australia 2006
- [3] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, *"Optimal decoding of linear codes for minimizing symbol error rate,"* IEEE Trans. Inform. Theory, vol. IT-20, pp.-284-287, March 1974.
- [4] Jean-Philippe Javaudin1, Yiqi Jiang2 IFrance Telecom, R&D Division, 4 rue du Clos Courtel, 35512 Cesson-Sevigne BP 52, France"*Channelestimation-MIMOOFDMI OQAM*" 978-1-4244-2046-9/08/\$25.00
 © 2008 IEEE
- [5] Chengyu Lin, Feng Yang, Wenjun Zhang, Youyun Xu" An Interpolation Based

Channel

Estimation-Method-for-MIMOOFDMSyst ems"978-1-4244-1722-3/08 © 2008 IEEE.

- [6] J.SIAM Numer. ANAL Ser. B, "Calculating The Singular Values And Pseudo-Inverse Of A Matrix", Vol.2 ,No. 2 Printed in U.S.A..1965
- [7] Daoud Karakolah, Christophe Jégo, Charlotte Langlais, Michel Jézéquel,"Architecture dedicated to the MMSE equalizer of iterative receiver for linearly precoded MIMO systems" Institut TELECOM; TELECOM Bretagne; CNRS Lab-STICC FRE 3167,2008
- [8] Tao Yang, Student Member, IEEE, Jinhong-Yuan,-Member,IEEE,Zhenning Shi, Member, IEEE, and Mark C. Reed, Member, IEEE"Convergence-Behavior-Analysis-an d-Detection-Switchingfor the Iterative Receiver of MIMO-BICM-Systems",IEEE-TRANSAC TIONS-ON-VEHICULAR-TECHNOLOG Y, VOL. 57, NO. 4, JULY 2008
- [9] Tao Yang and Jinhong Yuan Zhenning Shi and Mark C. Reed "Detection Switching in an Iterative Receiver for MIMO-BICM systems" University of New South WalesAustralia Proceedings of 2006 IEEE Information Theory Workshop (ITW'06)
- [10] Rui Li, Yonghui Li and Branka Vucetic "Iterative Receiver for MIMO-OFDM Systems withJoint ICI Cancellation and Channel Estimation" School of Electrical and Information Engineering University of Sydney Sydney, NSW, 2006, Australia
- [11] J. Proakis, *Digital Communications*, 2nd edition, McGRAW HILL, 2001.
- [12] B. Vucetic and J. Yuan, *Space-time Coding*, WILLEY, 2003.