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Abstract—In general there are two main 
approaches for overcoming the high-
dimensional and small sample size (SSS) 
problem. One is to apply feature extraction or 
selection to reduce the dimensionality, and 
then applying the reduced-dimensionality data 
set to classifier. The other is to modify the 
classifier design to be suitable for SSS problem. 
This study integrates the two approaches into 
a new K-nearest neighbour (KNN) classifier, 
namely adaptive KNN (AKNN). One remotely 
sensed hyperspectral benchmark image data 
set is included for investigating the 
effectiveness of AKNN. Experimental results 
demonstrate that the proposed AKNN can 
perform better than KNN and support vector 
machine (SVM) classifier. 
 
Keywords— K-nearest neighbor classifier, 
dimension reduction, feature extraction, small 
sample size problem, curse of dimensionality. 

1. INTRODUCTION 

The so-called small sample size (SSS) 
problem [1], [2], states that the number of 
available training samples is much smaller 
than the dimensionality of the sample space, 
and has been an important issue for high-
dimensional data classification. The Hughes 
phenomenon [3], [4] (or the curse of 
dimensionality) clearly describes the increase of 
the number of dimension potentially increases the 
class separability and the classification accuracy, 
but the accuracy will eventually decline when the 
ratio of the number of the training pixels and the 
dimensionality cannot be maintained at or above 
some minimum value to achieve statistical 
confidence [5]. Learning algorithms suffer from 
the SSS problem easily, and yield unsatisfactory 
classification results. The Hughes phenomenon 
shows two directions for mitigating the SSS 
problem. One is to reduce the dimensionality by 

feature extraction or feature selection techniques 
[6]-[14], and the other is to increase the number 
of training samples such as semi-supervised 
techniques [15], [16]. We focus on the 
application of feature extraction model in this 
study. 

The main purpose of feature extraction or 
feature selection is to mitigate the Hughes 
phenomenon. The feature selection method aims 
to select a suitable subset of the original features. 
The most important issue relative to feature 
selection is to find an efficient search strategy for 
obtaining such a subset for classification. Most of 
the existing feature selection methods are 
generally suboptimal due to the number of all 
possible combinations is prohibitive, particularly 
for high-dimensional data classification. The 
search strategies to avoid the exhaustive search 
are needed, and the selection of the optimal 
subset is therefore not guaranteed. Feature 
extraction uses all the features to construct a 
transformation that maps the original data to a 
low-dimensional subspace. The main advantage 
of feature extraction above feature selection is 
that no information of the original features needs 
to be wasted. Furthermore, feature extraction is 
easier than feature selection in some situations 
[17].  

Linear discriminant analysis (LDA) [1] has 
been played an important role for data 
classification. It is one of the most well-known 
dimension reduction methods and has been 
successfully applied to many classification 
problems. The purpose of LDA is to find a linear 
transformation that can be used to project data 
from a high-dimensional space into a low-
dimensional subspace.  Basically, LDA has three 
inherent deficiencies in dealing with 
classification problems. First, LDA is only well-
suited for normally distributed data [1]. If the 
distributions are significantly non-normal, the use 
of LDA cannot be expected to accurately indicate 
which features should be extracted to preserve 
complex structures needed for classification. 



 

Second, since the rank of between-class scatter 
matrix is the number of classes (L) minus one [1], 
the number of features can be extracted at most 
remains the same. Third, the singularity problem 
arises when dealing with high-dimensional and 
SSS data. Generally, there are three categories for 
solving the singularity of within-class scatter 
matrix [18]. In recent years, many approaches 
have been proposed to deal with the singularity 
problem for different applications, including 
regularized LDA (RLDA) [11], LDA/GSVD [12], 
LDA/QR [13], nonparametric weighted feature 
extraction (NWFE) [9], and nonparametric linear 
discriminant analysis (NLDA) [8]. Regularization 
and eigen-decomposition are the most often used 
techniques for alleviating the SSS problem. 
However, the first two problems still exist. 
Nonparametric linear discriminant analysis such 
as nonparametric discriminant analysis (NDA) 
[14], NWFE and NLDA provides a solution for 
circumventing both of the previously mentioned 
problems. In NWFE, a regularization technique is 
employed to solve the singularity problem, and 
all problems of LDA are then resolved. 
Additionally, nonparametric feature extraction is 
generally of full rank which provides the ability 
to specify the number of extracted features 
desired and works well even for non-normally 
distributed data [8], [9]. 

Our previous work demonstrated that 1NN 
and SVM with NLDA features can reach 
satisfactory performance on high-dimensional 
data set classification. In this paper, a novel K-
nearest neighbour (KNN) classifier is proposed, 
namely adaptive KNN (AKNN), which is 
constructed based on the NLDA features and the 
idea of fuzzy KNN (FKNN) algorithm [19]. In 
other words, the feature extraction algorithm can 
not only for reducing dimension but also for 
building classifier. The effectiveness of the 
proposed AKNN is evaluated by a benchmark 
hyperspectral data set with different training 
sample sizes, including the ill-posed and poorly 
posed classification problems [20]. 

The rest of the paper is organized as follows. 
In Section 2, some related work is reviewed. 
Then the details of the proposed AKNN are 
described in Section 3, followed by experimental 
designs and results in Section 4. Finally, 
conclusions are drawn in Section 5. 

2. RELATED WORK 

In this section, some work related to 

ours is reviewed. For convenience, some 
important notations employed in the study 
are presented in Table 1. 

TABLE 1. 
IMPORTANT NOTATIONS EMPLOYED IN THE 

PAPER 
Notation Description Notation Description 

X data matrix N  total training 
samples 

Xi 
data matrix of 
the ith class Ni 

number of 
training samples 
in the ith class 

L number of 
classes x

(i)
`  the `th sample in 

the ith class 

Pi 
prior 
probability of 
the ith class  

p 
dimensionality of 
the reduced 
subspace 

d 
dimensionality 
of the original 
space 

Mj(x
(i)
` )

 
local mean of x(i)

`  
in the jth class  

A transformation 
matrix 

¹ regularization 
parameter 

Km 
number of nearest neighbors included for 
estimating the individual metric of each training 
sample in AKNN 

2.1. Nonparametric Linear Discriminant 
Analysis (NLDA) 

The goal of linear feature extraction is to find a 
transformation matrix A  which maximizes 
between-class ( Sb ) and minimizes the within-
class ( Sw ) scatter matrices in the reduced 
dimensional space [1]. The common optimization 
criterion for finding A is 

A = argmax

A

tr((AT SwA)¡1AT SbA).          (1) 

The maximization of (1) is equivalent to solving 
the generalized eigenvalue decomposition 
problem  

  Sbvh = ¸hSwvh; h = 1; : : : ; p.      (2) 
where p  denotes the dimensionality of the 
reduced subspace, (¸h; vh ) represent the eigen-
pair of S¡1

w Sb, and ¸1 ¸ ¸2 ¸ ¢ ¢ ¢ ¸ ¸p. Thus, the 
transformation matrix A = [v1; : : : ; vp]  can be 
obtained. 

The within-class scatter matrix of NLDA 
(denoted as SG

w ) is defined as 

SG
w =

LX
i=1

Pi

NiX
`=1

(x
(i)
` ¡Mi(x

(i)
` ))(x

(i)
` ¡Mi(x

(i)
` ))T ,   

(3) 

where Pi  and Mi(x
(i)
` )  are the prior probability 

and local mean with respect to x(i)
`  in class i , 

respectively. The local mean  Mi(x
(i)
` ) is defined 

as 



 

Mi(x
(i)
` ) =

1

k

kX
s=1

x
(i)
sNN ,                     (4) 

denotes the sample mean of the KNNs with 
respect to x(i)

` . 
The between-class scatter matrix of NLDA (SG

b ) 
is defined as 

SG
b =

LX
i=1

Pi

LX
j=1
j 6=i

NiX
`=1

(x
(i)
` ¡Mj(x

(i)
` ))(x

(i)
` ¡Mj(x

(i)
` ))T , 

(5) 
where Mj(x

(i)
` ) is the local mean with respect to 

x
(i)
`  in class j. 

The idea to construct NLDA is twofold: 
First, we find that the local mean Mi(x

(i)
` ) can be 

regarded as a leave-( Ni ¡ k )-out mean vector. 
Intuitively, Mi(x

(i)
` )  can approximate to class 

mean mi  as the value of k  is close to Ni . The 
estimators of scatter matrices will be more 
general and flexible. Second, to work well for 
non-normally distributed data, the within-class 
and between-class scatter matrices should be 
nonparametric simultaneously. The geometric 
depiction of the relationships of the within-class 
and between-class scatter matrices for the 
proposed NLDA is demonstrated in Fig. 1. The 
orange and green dash lines show the 
relationships between local means and class 
means in within-class and between-class, 
respectively. 

 
Fig. 1. Geometric depiction on the relationships 
between the local and class means. 

For extracting informative features, the 
criterion J = tr(S¡1

w Sb) requires the within-class 
scatter matrix Sw  to be nonsingular [1], [21]. 
However, when the size of training samples is 
small, Sw is often singular or nearly singular. For 
preventing the singularity of Sw , the 
regularization is one of the prominent techniques 
[8], [9], [10]. For NLDA, the regularization form 
is adopted as 

SGR
w = (1¡ ¹)SG

w + ¹diag(SG
w ),          (6) 

where ®  is the regularization parameter. The 
grid-search and cross validation (CV) methods 
are adopted to search the best value of ¹ in this 
study. 

Simultaneous diagonalization of two 
matrices is a very powerful tool in pattern 
recognition [1]. In fact, the transformation matrix 
A  consists of eigenvectors of (SGR

w )¡1SG
b  can 

diagonalize SGR
w  and SG

b  simultaneously, which 
has been proven in [1, p.32]. Nevertheless, when 
the singularity problem of SG

w  has resolved by 
utilizing SGR

w , there is another essential issue 
about the eigenvectors has to be taken care. That 
is, the matrix (SGR

w )¡1SG
b  may be not symmetric 

in general, and subsequently the eigenvectors vi’s 
are not mutually orthogonal. Thus, to make the 
vi’s orthonormal with respect to SGR

w  to satisfy 
AT SGR

w A = I , the scale of vi must be adjusted by 

vi =
viq

vT
i SGR

w vi

                   (7) 

such that 

vT
iq

vT
i SGR

w vi

SGR
w

viq
vT

i SGR
w vi

= 1.          (8) 

The details of the NLDA is shown in Algorithm 1.  

Algorithm 1: NLDA 
Input: the data matrix X 2 Rd£N , where d is the 
dimensionality of original space and N  is the 
number of training samples. 
Output: the projection data matrix 
Y = AT X 2 Rp£N , where A 2 Rd£p  and p  is the 
dimensionality of reduced subspace. 
 
Process: 

Step 1. Select a value of k for estimating the local 
mean Mj(x

(i)
` )  with respect to each 

training sample x(i)
`  in X. 

Step 2. Compute the within-class and between-
class scatter matrices in (3) and (5), 
respectively. 

Step 3. Calculate the regularized within-class 
scatter matrix SGR

w  in (6). 

Step 4. Select the p  eigenvectors of (SGR
w )¡1SG

b , 
which correspond to the p  largest 
eigenvalues. 

Step 5. Adjust each eigenvector vi  by (7), 
i = 1; : : : ; p, and A = [v1; : : : ; vp] 2 Rd£p. 

Step  6. Calculate the transformed data Y = AT X. 



 

2.2. Support Vector Machine (SVM) 
The support vector machine (SVM) [22] has 

considered a must try since it offers one of the 
most robust and accurate methods among all 
well-known algorithms [23]. As we know, SVM 
has a solid theoretical foundation and requires 
only a dozen samples for training. SVM attempts 
to separate samples between classes by 
maximizing the margins in the kernel space 
where samples are mapped. Fundamentally, the 
SVM classifier is designed for two-class 
problems. It can be extended for multiclass 
problems by designing a number of two-class 
SVMs. One against one (OAO) and One against 
all (OAA) are two different approaches. 

 

 
Fig. 2 Optimal separating hyperplane in SVM for 
a linearly separable case. Red and blue samples 
refer to the classes “+1” and “-1,” respectively. 
Support vectors are indicated by an extra circle. 

Let D = f(x1; y1); : : : ; (xN ; yN)g be the 
training data set which contains N data points, 
where yi 2 f+1;¡1g denotes the class label for 
the data point xi . The problem of finding the 
weight vector w  can be formulated as the 
minimization of the following function: 

L(w) =
1

2
kwk2 + C

X
i

»i             (9) 

subject to yi[w ¢ Á(xi) + b] ¸ 1¡ »i; »i ¸ 0. Here, 
the »i is the so-called slack variable and  b is the 
bias and the function Á(x) maps the input vector 
to the feature vector. The dual formulation is 
given by maximizing 

Q(¸) =

NX
i=1

¸i ¡
1

2

NX
i=1

NX
j=1

yiyj¸i¸j·(xi; xj), (10) 

subject to 
PN

i=1 yi¸i = 0  and 0 · ¸i · C . The 
parameter C , called as regularization parameter, 
controls the trade off between complexity of the 
SVM and the misclassification rate. 
·(xi; xj) =< Á(xi); Á(xj) > is the kernel function. 
Only a small fraction of the ¸i’s are nonzero. The 
corresponding pairs of xi’s are known as support 
vectors, and they fully define the decision 
function. Geometrically, the support vectors are 
the points lying near the separating hyperplane.  

There are two main fascinating properties of 
SVM in practical applications. First, the linear 
patterns can be represented efficiently via kernel 
trick [24] without computing their coordinates 
explicitly; in other words, the algorithms can be 
implemented in terms of pairwise inner products 
in feature space and the inner products can be 
calculated directly from the original data by 
employing a kernel function. Second, a linear 
relationship can be found in the feature space, 
which is equivalent to seeking the nonlinear 
relationship in the original space. 

2.3. K-Nearest Neighbor Classifier 
The K-nearest neighbors (KNN) classifier is 

one of the simplest and rather trivial classifiers. 
KNN classifier finds a group of K samples in the 
training set that are close to the test sample, and 
then the test sample is classified by the majority 
category of K-nearest neighbors. In other words, 
to classify an unlabeled sample, the distance of 
this sample to the entire training data is computed, 
its KNNs are identified, and the class labels of 
these KNNs are then used to determine the class 
label of the test sample. The Euclidean distance is 
the most widely used similarity (or dissimilarity) 
metric for KNN classifier. The KNN 
classification algorithm is stated in Algorithm 2. 
Algorithm 2: KNN Classifiier 
Input:  

The training set 
D = f(x1; y1); : : : ; (xN ; yN)g  and a test sample 
x¤ = (z; l). 
Output: l = argmax

v

X
(xi;yi)2D

I(v = yi) , where 

I(¢)  is an indicator function that returns the 
value 1 if its argument is true and 0 otherwise. 
Process: 

Step 1. Compute the distance between x¤ 
and every training sample xi , 
d(x¤; xi). 

Step 2. Find the K closet training samples 
to x¤. 

w
w ¢ x + b = +1

w ¢ x + b = ¡1 

w ¢ x + b = 0,
Optimal 
separating 
hyperplane 

Support 
vectors 

Margin=2=kwk 

Nonmargin support 
vector ¡ »i

kwk 



 

3. ADAPTIVE K-NEAREST NEIGHBOR 
CLASSIFICATION  (AKNN) 

The aforementioned KNN classifier does not 
include the training phase since there is no 
information learned from the training samples 
before classifying a test sample. In FKNN, its 
training phase, i.e., fuzzification scheme, is 
devoted to collect local information surrounding 
each sample, and then the information will exert 
influence in the classification phase. The local 
information accompanying each training sample 
is a membership vector, containing degrees that 
each training sample belongs to other classes. 
This is quite an attractive idea for supervised 
classification, and AKNN will embed this idea in 
it. 

One of the important advantages of 
nonparametric feature extraction methods is that it 
is generally of full-rank. Thus, the number of 
features that can be extracted is the same as the 
dimensionality of the original space. In other 
words, one can construct another feature space by 
using nonparametric feature extraction model. In 
the new feature space, the projected data is more 
separable than in the original space. In other 
words, the new feature space forms a better 
distance metric. Based on the idea of the 
fuzzification scheme of FKNN, we develop 
AKNN. In AKNN, each training x  carries a 
distance metric consisting of the all features 
extracted by NLDA using its nearest Km  samples.  

Let R(x; Km)  be the set including Km  
nearest training samples with respect to any 
training sample x, and L¤ · L  is the number of 
classes in R(x; Km) . Hence, the local between-
class (SA

b ) and within-class scatter (SA
w )  matrices 

of x are calculated by  

SA
w (x) =

L¤X
i=1

Pi

X
x
(i)
` 2R(x;Km)

³
x

(i)
` ¡Mi(x

(i)
` )

´ ³
x

(i)
` ¡Mi(x

(i)
` )

´T, (11) 

SA
b (x) =

L¤X
i=1

Pi

L¤X
j=1;
j 6=i

X
x
(i)
` 2R(x;Km)

³
x

(i)
` ¡Mj(x

(i)
` )

´³
x

(i)
` ¡Mj(x

(i)
` )

´T , (12) 

where ni denotes the training sample size of class 
i  in R(x; Km) , and n1 + n2 + ¢ ¢ ¢ + nL¤ = Km . 
Notably, the estimation of the local metric will 
seriously encounter the SSS problem. If Ni  is 
already small, then the number of the training 
samples per class in R(x; Km), denoted as N̂i, is 
definitely smaller than Ni . For example, if 
Km = 30  and L¤ = 3 , then N̂i = 10  on average. 
Thus, a more severe condition for extracting 
features will arise. Importantly, the proposed 

NLDA has proved to be useful for alleviating this 
problem. 

Let (¸h; vh)  denote the eigen-pair of 
(SA

w (x))¡1SA
b (x), h = 1; 2; : : : ; d  and ¤ =

Pd
i=1 ¸i . 

Define a new metric 

§A
x =

¸1

¤
v1v

T
1 +

¸2

¤
v2v

T
2 + ¢ ¢ ¢ +

¸p

¤
vdvT

d .  (13) 
Note that 

§A
x vh =

¸h

¤
vh;8h = 1; 2; : : : ; d:     (14) 

Thus, (¸h

¤ ; vh) is a eigen-pair of §A
x . In the training 

phase of AKNN, each training sample is with a 
distance metric (13). 

When classifying a test sample x¤, the metric 
§A
¤  is determined by the summation of the 

weighted metric of its s-nearest training neighbors 
x1; : : : ; xs according to 

 §A
¤ =

Ps
`=1 w`§

A
`

s
,                 (15) 

where w` = d(x`; x
¤)¡1=

Ps
`=1 d(x`; x

¤)¡1.  

Evidently, we weigh §A
¤  by the inverse of the 

Euclidean distance from x` to x¤, where s denotes 
the number of nearest neighbors of x¤ . The 
estimator of §A

¤  in (15) provides a scenario to 
handle the measurement uncertainty of the 
distance metric of x¤. By applying §A

¤ , the new 
distance between x  and a test sample x¤  is 
calculated by 

d̂(x; x¤) = (x ¡ x¤)T §A
¤ (x ¡ x¤).     (16) 

After recomputing the distance according to (16), 
x¤  is classified through means of the majority 
category of its new K-nearest neighbors.  

The AKNN classification algorithm is 
summarized in Algorithm 3, and its idea is 
illustrated in Fig. 3. 

Algorithm 3: AKNN Classifier 
Input:  

The training set D = f(x1; y1); : : : ; (xN ; yN )g 
and a test sample x¤. 
Output: l = argmax

v

X
(xi;yi)2D

I(v = yi), where I(¢) 

is an indicator function that returns the value 1 if 
its argument is true and 0 otherwise. 
Process: 
A. Training phase 

Step 1. Given the value Km  and find the Km-
nearest neighbors for each training 
sample x` according to Euclidean 
distance, ` = 1; 2; : : : ; N . 

Step 2. Calculate the local within-class 



 

(SA
w (x`)) and between-class (SA

b (x`)) 
scatter matrices of x` by using the 
samples in R(x`; Km). 

Step 3. Estimate the metric §A
`  of x`,  

` = 1; 2; : : : ; N . 
B. Classification phase 

Step 1. Estimate the metric §A
¤  for a test 

sample x¤ according to (15). 
Step 2. Compute the new distance between x` 

and x¤ by (x` ¡ x¤)T §A
¤ (x` ¡ x¤), 

` = 1; 2; : : : ; N . 
Step 3. Classify x¤ by the majority category 

of the new K-nearest training 
neighbors. 

 

 
Fig. 3 Illustration of AKNN. 

4. EXPERIMENTAL DESIGN AND 
RESULTS 

4.1. Data Set 
For evaluating the performance of the 

proposed AKNN, one real hyperspectral image 
dataset, Indian Pines scene (IPS), is included.  
The IPS image was gathered by the AVIRIS 
instrument in 1992, mounted from an aircraft 
flown at 65000 ft. altitude and operated by the 
NASA/Jet Propulsion Laboratory, with the size of 
145×145 pixels has 220 spectral bands measuring 
approximately 20m across on the ground. The 
data set represents a very challenging land-cover 
classification scenario, in which the primary 
crops of the area (mainly corn and soybeans) 
were very early in their growth cycle, with only 
about 5% canopy cover. Discriminating among 
the major crops under these circumstances can be 
very difficult. The IPS consists of 16 ground-
truth classes, ranging from 20 to 2468 pixels in 

size. Since the size of samples in some classes 
are too small to retain enough disjoint samples 
for training and testing, only nine classes, Corn-
min, Corn-notill, Grass/Pasture, Grass/Tree, Hay-
windrowed, Soybeans-min, Soybeans-clean, 
Soybeans-notill, and Woods, were selected for 
the experiments. The data is available online 
from 
http://cobweb.ecn.purdue.edu/~biehl/MultiSpec/. 
All the Indian Pines data samples are divided into 
4757 training samples and 4588 test samples, as 
listed in Table 2. Experiments with four different 
sets containing 2%, 5%, 10% and 25% of the 
training samples are carried out. 
 

TABLE 2. 
NUMBER OF TRAINING AND TEST SAMPLES 
USED IN THE INDIAN PINES SCENE. 
No Name #Train #Test 
1 Corn-notill 742 692 
2 Corn-min 442 392 
3 Grass/Pasture 260 237 
4 Grass/Trees 389 358 
5 Hay-windrowed 236 253 
6 Soybeans-notill 487 481 
7 Soybeans-min 1245 1223 
8 Soybeans-clean 305 309 
9 Woods 651 643 
  4757 4588 

4.2. Experimental Design 
The 2% and 5% cases are the so-called ill-

posed and poorly posed classification problems 
[20], respectively. They are challenging cases in 
the field of pattern recognition. Two other 
classifiers, the 1-nearest neighbour (1NN) and 
soft-margin SVM with RBF kernel function 
(SVM-RBF) classifiers, are used for comparison 
in this study, which are implemented in PRTools 
[25] and LIBSVM [26], respectively. The 1NN 
and SVM are considered two of the robust 
classifiers in the pattern recognition field. For the 
soft-margin SVM classifier, there is a parameter 
C  to control the trade-off between the margin and 
the size of the slack variables, and a parameter ¾ 
for the RBF kernel function. We use the five-fold 
cross validation to find the best C  and ¾  within 
the given set f10¡5; : : : ; 105g. The values of k for 
estimating the local mean in NLDA is set to 3.  

x¤1x¤1 

x¤2x¤2 

x
(1)
1x
(1)
1  

x
(1)
2x
(1)
2

x
(2)
1x
(2)
1  

x
(2)
2x
(2)
2  

Class 1

Class 2 

 

 

 



 

Fig. 4 The test image of the Indian Pines data set. 
Bands 50, 27 and 17 of 220 bands were used for 
this image space presentation. 

4.3. Experimental Results 
Table 3 lists the classification results on the 

IPS data set. AKNN outperforms KNN and SVM 
in all cases. AKNN significantly outperforms 
KNN, which shows that using fuzzy local metric 
is useful than the Euclidean metric. There is 
about 10% difference between AKNN and KNN 
in 10% and 25% cases. Also, there is more than 
3% difference between AKNN and SVM in 5%, 
10% and 25% cases. 

 
TABLE 3 

THE CLASSIFICATION ACCURACIES ( IN %) OF 
USING 1NN, SVM-RBF AND AKNN 

CLASSIFIERS. 
Classifier 2% 5% 10% 25% 

KNN 55.9 69.1 71.9 77.5 
SVM 61.7 73.6 78 84.4 

AKNN 62.5 77.3 81 87.9 
 

Fig. 5 is the ground truth of Fig. 4. Some IPS 
thematic maps classified by the three classifiers 
are demonstrated in Figs. 6 to 11. The results in 
the 10% case are summarized as follows: 

1) AKNN achieves the best visual effect, 
particularly in the red squared area, 
including “Corn-notill”, “Soybeans-
clean”, and “Soybeans-min” parts. 

2) The blue circled part shows that the 
misclassification difference between 
SVM and AKNN. In this part, SVM 
tends to misclassify “Soybeans-notill” to 
“Soybeans-min”, but AKNN tends to 
misclassify “Soybeans-notill” to “Corn-
notill”. The “Soybeans-notill” part at the 
bottom of the figure (see Fig. 5) is almost 
completely misclassified to “Soybeans-
min” for SVM. 

The results in the 25% case are similar to the 10% 
case. AKNN still achieves the best visual effect, 
and has better classification in almost every part.  
 

Fig. 5 The ground truth of Fig.4 

Fig. 6 Thematic maps resulting from the 
classification of the area of Fig. 5 in the 10% case 
by 1NN classifier. 

Fig. 7 Thematic maps resulting from the 
classification of the area of Fig. 5 in the 10% case 
by SVM classifier. 



 

 
Fig. 8 Thematic maps resulting from the 
classification of the area of Fig. 5 in the 10% case 
by AKNN classifier. 

Fig. 9 Thematic maps resulting from the 
classification of the area of Fig. 5 in the 25% case 
by 1NN classifier. 

Fig. 10 Thematic maps resulting from the 
classification of the area of Fig. 5 in the 25% case 
by SVM classifier. 

Fig. 11 Thematic maps resulting from the 
classification of the area of Fig. 5 in the 25% case 
by AKNN classifier. 

 

5. CONCLUSIONS 

The objective of this study is to introduce a 
new application of nonparametric feature 
extraction method for building a KNN-type 
classifier.  The proposed AKNN contains training 
and classification phases, in which the advantage 
of nonparametric feature extraction model is 
taken in the training phase and the concept of 
uncertainty is embedded in the classification 
phase. The experimental results demonstrated 
that it significantly outperformed the classic 
KNN classifier. AKNN also obtained satisfactory 
results as compared with SVM. 
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