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Abstract—Data mining is a process of 

extracting potentially and previously unknown 

information technique which have been 

applied to study the real-life research 

increasingly. Many techniques have been 

developed to extract decision rules from an 

incomplete information system. A key factor 

among them is to use different methods to 

manage the missing data (unknown values).In 

this paper, we propose a mathematic method 

based on the Binomial Distribution to calculate 

the plausibility and probability of possible 

rules from original incomplete information 

systems, especially for diagnosis database. 
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1. INTRODUCTION 

It is noted that due to the typically huge size of 

today’s information systems, real-world data tend 

to be incomplete due to missing some values. 

Hence, discover knowledge from incomplete 

information systems has received more and more 

attention in recent years.  

The rough sets theory, proposed by Pawlak [1], 

provides a natural method to cope with 

incomplete or inconsistent information which has 

been the mainly impediment to the classification 

and rule induction of objects [2, 3]. By using the 

concept of lower and upper approximation of 

rough set theory, knowledge invisible in 

information systems may be disclosed and 

expressed in the form of decision rules via an 

objective knowledge induction process for 

decision making. Various approaches have been 

proposed to induce decision rules from data sets 

taking the form of complete decision systems [4-

11] Whereas, due to the abundant existence of 

incomplete information systems in real life, many 

applications developed extensions of Pawlak’s 

rough set model  to extract decision rules from an 

incomplete information system [12-18].A key 

factor among them is using different methods to 

manage the missing data (unknown values) . The 

simplest is removing the objects with unknown 

values [19]. More complex approaches which 

provide tactics to deal with null values in terms of 

statistics are proposed in [20-23]. For example, 

the techniques proposed in [23] predict the 

unknown values of an attribute on the basis of 

values of other attributes of an object and relevant 

class information. Another method deals with 

null values in the source system by replacing a set 

of assumed objects in the intention system. In 

truth, the converted complete system is the simple 

combination of all completions of the source 

system. All these methods all try to transform an 

incomplete system into a complete system by 

smoothing or extending the data.  

Other groups of techniques deal with the 

incomplete systems without changing the size of 

the data sets or making assumption of the missing 

values [24, 25]. For example, Deng et al. [26], 

Hong et al. [27, 28], Jensen and Shen [29] and 

Wang et al. [30], used rough set models to handle 

fuzzy and quantitative data. These methods 

intend to induce every certain rule directly from 

the original data sets.  

Like the second group, our approach uses a 

rule generation algorithm to induce all certain 

rules and possible rules from the original 

incomplete data. In this paper, we propose a 

mathematic method based on the Binomial 

Distribution to calculate the plausibility and 

probability of possible rules from original 

incomplete information systems. 

2. BACKGROUND AND DEFINITIONS 

2.1. Rough sets theory preliminary (R.S.T) 

The rough sets theory provides a natural 

method to deal with incomplete or inconsistent 

information which has been the mainly obstacle 

to the classification and rule induction of objects. 

In this section we recall some basic notation of 

R.S.T that related to our research, and we assume 
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that reader is familiar with basic principle of 

R.S.T. For more detail introduction of R.S.T, see 

references [1, 31]. 

.Incomplete information systems 

An incomplete information system IS with 

two-tuple can be seen as a system: IS = (U, A  ), 

where A  is the set of attributes (features, 

variables) containing unknown values. Each 

attribute a ∈ A  defines an information function  

af  : U→ aV  , where aV  is the set of values of a 

including unknown values (M), called the domain 

of attribute a. A decision table is any information 

system with a decision attribute d: T  =(U, A  ∪ 

d). 

Example.1 Transfer the incomplete medical 

diagnosis data (table1) into rough sets decision 

table.  

Using the terminology of the rough sets theory 

this data set can be considered as follows: 

U = {x0 , x1 , x2 , x3 , x4 , x5 , x6 ,. ….x9} 

A  = {F1, F2, F3}  

 d =(Temperature, Dry-cough , Headache) 

TABLE 1 

MEDICAL DIAGNOSIS DATA 

 

TABLE 2 

DECISION TABLE 

The domains of the particular attributes are: 

  1V ={0,1,2,M}, 0=normal, 1= Subfebrile, 

2=high, M=missing. 

  2V ={0,1,M}, 0=absent, 1=present, M=missing. 

  3V ={0,1,M}, 0=absent, 1=present, M=missing. 

  dV ={0,1}, 0=absent, 1=present. 

i.e., the domain of each attribute is the set of 

values of this attribute. The decision table for this 

system is presented in Table 2. 

2.2. Reduct generation 

In R.S.T based applications for classification 

and rule induction, the knowledge induction from 

reducts is the most important concept. By 

definition, a reduct is defined as minimal 

sufficient sets of features necessary for the 

description of all features A, (Pawlak, 1991)[32]. 

Nevertheless, a rule reduct, r-reduct, is a subset of 

features that can define all basic concepts for 

each object. In other words, a r-reduct is utilizing 

part of input features to uniquely identify output 

feature for each object. Furthermore, each r-

reduct represents a decision rule. Consider a 

single-feature r-reduct with four input features 

and one output feature:2 x x x 1 , the entry ‘x’ 

mean that corresponding feature does not affect 

the determination of the feature output, only 

entry‘2’ does, and the decision rule can be 

expressed as:  

 

If F1=2 Then d=1 

For two-feature r-reduct: 1 x 2 x 2 , only 

features F1 and F3 affect the determination of the 

output feature , and the decision rule is: 

 

If F1=1 Λ F3=2 Then d=2 

Usually, there exists more than one r-reduct for 

each object. However, the knowledge rule of data 

not only can be inducted from lower and upper 

approximation of R.S.T but also can be directly 

analysed from all r-reducts. 

3. PROBABILITY ANALYSIS FOR 

POSSIBLE RULES 

If we determine all the certain rules of table1 

using data mining tools, the result will come out  

as following: 

 

Attributes  Decision Row 

no Temperat

ure 

Dry-

cough 

Headache Influenz

a 

0 Missing Absent Absent Absent 

1 Normal Absent Present Absent 

2 Subfebrile Absent Present Present 

3 Subfebrile Missing Absent Absent 

4 Subfebrile Present Absent Present 

5 High Absent Missing Absent 

6 High Present Absent Absent 

7 High Present Absent Present 

8 High Present Present Present 

9 High Present Present Present 

Obj F1 F2 F3 F4 

X0 M 0 0 0 

X1 0 0 1 0 

X2 1 0 1 1 

X3 1 M 0 0 

X4 1 1 0 0 

X5 2 0 M 0 

X6 2 1 0 0 

X7 2 1 0 1 

X8 2 1 1 1 

X9 2 1 1 1 
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 one feature r-reduct: 

 
 two feature r-reduct: 

 
And finally the certain rules are : 

 
Certain rules 

Symbols for Influenza = absent 

IF (Temperature = normal) 

IF (Dry-cough = absent) and (Headache = 

absent) 

IF (Temperature = subfebrile) and (Dry-cough 

= present) 

IF (Temperature = high) and (Dry-cough = 

absent) 

IF (Temperature = subfebrile) and (Headache = 

absent)  

 

Symbols for Influenza = present 

IF (Temperature = subfebrile) and (Dry-cough 

= present) 

 
However, in real world applications, certain 

rules induced directly from incomplete 

information systems may not provide enough 

knowledge for enterprises or decision makers to 

predict uncertain situations or provide strategies. 

Hence, generating possible rules by probability 

analysis can improve the expediency of rule 

extraction approach for incomplete information 

systems. 

Let U/R ={ E1 E2 E3…….Em} be a partition 

space of universe of objects U, where Ei is set of 

objects in the same equivalence class defined by 

R. For example, for a one-feature Fi, R may be 

defined as the set of all possible outcomes of Fi 

and Ej is the set of objects having the same j
th
 

outcome of Fj. Let Di={x∈U| d(x)= di} be the set 

of all objects whose output feature are classified 

as di. A “possible” rule: “If input feature Fij = aij 

then output feature d = di” can be associated with 

a plausibility as :   

 a ak with   objects of #   

 d  d(k) and a  ak with   objects of #

ijkj

iijkj

=

==
 

or expressed as           : 
||

||

j

ij

E

DE ∩
                 (1) 

As we know, “plausibility” indices only 

calculates the frequency of the rule, which are not 

“probability analysis” that allow more precise 

statements of reliability and quality of those rules. 

Hence, in this section, we will build a probability 

function combining the plausibility and 

probability of missing values to compute the 

possible rules for incomplete information systems. 

3.1. The Binomial Distribution  

The binomial distribution is a discrete 

distribution model to calculate the probability of 

an experiment that has two possible outcomes for 

each trial, called “success” and “failure”. Let the 

probability of success and failure be B and 1-B 

respectively, if the experiment consists of t 

repeated trials, the binomial model computes the 

probability of θ successes in t trials as a random 

variable X as follows: 

P(X=θ) = 








θ

t
B
θ
 (1-B)

t-θ
  for θ= 0, 1,….,t        (2) 

Where  

 x = a random variable representing the 

number of successes 










θ

t
 = the number of ways θ objects can be 

chosen from a set of  t objects. 

i.e.    








θ

t
 = 

)!(!

!

θθ −t

t
 

The binomial distribution model is appropriate 

when satisfying these assumptions: 

1)  Binary outcome for each trial. 

2)  The probability B is identical for each trial. 

3)  Fixed experiment size, t. 
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4)  The outcomes of t trials are all independent.  

Next we will show how the binomial model 

can be applied to build the probability function of 

possible rules after inducing certain rules from 

incomplete information systems. 

When considering the plausibility of an 

uncertain rule-reduct p, which include features 

containing missing value Mij, the outcome of Mij 

will affect the probability of that possible rule. 

For each missing Mij, there exist two possible 

outcomes, Mij = aij (success) or Mij ≠ aij (failure). 

Hence, we can consider the outcomes of Mij as a 

binomial distribution: 

P(X=θ)= 










θ
pt

B
θ
 (1-B)

tp-θ
  for θ= 0, 1...,tp (3) 

where  

θ  = the number of success outcomes(Mij=aij) 

for possible reduct p 

tp  =  the total number of Mij 

B  = the probability that Mij=aij. 

Recall that for a given set of features ℑ , let 

kℑ  be the k
th possible combination of values of 

the features in ℑ , and there are m possible 

combinations. In case ℑ  consists of a single 

feature Fj, kℑ  is the k
th possible combination of 

Fj. 

Then we define Ek ={ x∈U| ℑ(x)= kℑ  }, 

k=1, …, m 

Also define Di={x∈U| d(x)= di} where di is 

the i
th

 possible value of decision feature d. 

Assume there are n possible values of d, i.e. 

i=1, …, n. 

Finally we define Aik as the plausibility that kℑ  

the kth possible combination of outcomes of 

features in ℑ , signifies the decision variable di. 

Thus: 

Aik = 
||

||

k

ik

E

DE ∩
      k =1, …, m; i = 1, …, n 

 where  | S | = number of members in the set S, 

cardinality of S.  

Note that    

∑
=

n

i

ikA
1

 ＝ ∑
||

||

k

ik

E

DE ∩
＝

||

||

j

j

E

E
＝ 1 

Now suppose each possible combination of 

outcomes kℑ  has some missing values, 

nevertheless, we still would like to construct a 

reduct pij using the available outcomes in kℑ  to 

infer decision di. There is obviously some 

uncertainties associated with the accuracy of the 

prediction of reduct Pij due to the fact the missing 

values may or may not result in conflicting 

outcomes. Reducts generated in this case are 

therefore not “certain” reducts, but “possible” 

reducts with some probability of being right. We 

combine the concepts of plausibility Aij above 

with the binomial model of missing values 

described earlier to construct the probability 

associated with reducts pij’s as follows: 

Before we give a general formula for 

computing the probability of a general reduct, we 

consider a special simple case of reduct built on 

one-feature reduct first to illustrate the ideas 

involved. 

       One-feature reduct case: 

Let ℑ consists of a single feature F who 

 j
th

  possible outcome is fj. 
Let pij be the one-feature reduct “ For an object  

x∈U, if F(x) = fj, then  d(x)= di”. 

Let Ej ={ x∈U| Fj(x)= fj} and recall Di={x∈U| 

d(x)= di} 

Now for any x∈U, if Fj(x) does not exist, we 

say x has a missing value under Fj and we denote 

the missing value by Mxj. Let the number of 

Mxj(under feature Fj) be tj.       

If the missing value Mxj = fj and x∈Di, then the 

object x supports or strengthens reduct pij. We 

call this case a “success”. We can assume that the 

probability that Mxj = fj is constant and equals B. 

Let θ  be the number of missing values Mxj that 

are equal to fj, which is a random variable with 

the binomial distribution as discussed earlier. 

Now out of tj missing values that can possibly 

affect the accuracy of reduct pij, there are θL = 










θ
jt

 combinations that θ  of those missing 

values will be equal to fj. 

Let U⊆
l

θ be the l
th

 combination of such 

combinations. 

Define E
lθ ={ x U∈ | F(x) = fj } ∪ { x

l
θ∈ | Mxj 

=fj } 

Clearly the first and second sets in the union on 

the left hand side are exclusive. Hence: 
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ijxj

ij

i

DfMx

DfxFUx

DE

∩=∈+

∩=∈=

∩

}|{

})(|{

l

l

θ

θ

 

= 
liij θη +                                                  (4) 

We note that given the number of missing 

values assigned to fjk being equal to θ , the 

probability that it will have combination 
l

θ  is 

1/ θL  since each of the θL combination is equally 

likely. Thus if we define θiA as the probability 

that if θ  of the tj missing values Mxj = fj, then the 

reeduct pij will predict di correctly: 

)5(
)(

1

)|(

1

1

1

−−−−−−−
+

+
+

=














+

+
=

×











 ∩
=

∑
∑

∑

=

=

=

θ

θ

θ

θθ

θ

θ

θ

θη

θ

θη

η

θη

θη

θθ

L

j

L

i

j

ij

j

iij

L

l

i

i

LL

p
E

DE
A

l

l

l
l

l

l

l

 where 

})(|{ jj fxFUx =∈=η
. 

Note that ∑ =
i

jij ηη  and ∑=
i

ilθθ  which is 

independent of l .  Now we also note that:  

∑
i

=θiA
)

)(
()( 1

θθη

θ

θη

η

θ

Lj

L

i

ij

ij

i +
+

+

∑
∑∑ =l

l

 

=



























+








+

∑ ∑
∑ =

θ

θ

θ

η
θη L

L

i

i

i

ij

j

11 l

l

=
θη

θη

+

+

j

j =1 

Moreover, we can now estimate the probability 

that reduct pij will predict correctly (regardless of 

how the missing values Mxj turn out) as: 

 

( )
jji fxFdxdp == )(|)(

  

= ∑
=

jt

i pA
0

)(
θ

θ θ  

 ∑
=

−
−










=

j

j

t
t

jj

j

i BB
t

A
0

)1(
θ

θθ

θ
θ

 

∑
=

−
−










=

j

j

t
t

jji

j
BBA

t

0

)1(
θ

θθ

θ
θ

------------(6) 

 

Note that (6) is a legitimate probability 

quantity since 

 
∑
i

( )
jji fxFdxdp == )(|)(

 

= =∑∑
==

jj t

i

t

pA
00

)(
θ

θ
θ

θ ∑ ∑
=

jt

i

i pA
0

)()(
θ

θ θ  

=∑
=

jt

p
0

)(
θ

θ =1 as desired 

 

Multiple-feature reduct case 

Now we consider a more general case where 

the set of features that is used to form a reduct p 

consists of more than one feature. 

Let there be J features in ℑ.  Recall that we 

define kℑ  as the k
th combination of possible 

values of the J features in ℑ . A reduct pik may, 

hence be defined as: “If the features in ℑ  have a 

combination of values kℑ  for object x, then 

d(x)=di”. If there are missing values Mxj for 

feature j in ℑ  for object x in U, then reduct pik is 

not a “certain” rule, since the actual value of Mxj 

can support or conflict with reduct pik. The 

probability that reduct pik will give an accurate 

prediction can be computed as follows: 

Let  

Bj :  be the probability that missing value Mxj 

=fjk where fjk is the value of feature in ℑ   that is 

part of the combination kℑ  in reduct pik. 

Normally we estimate Bj as 1 / Vj, where Vj is the 

possible values of feature j. 

   tj : be the total number of missing values of 

feature j in ℑ that will affect reduct pik among all 

object x∈U . 

Hence there will be t = ∑
ℑ∈j

jt  missing values 

for all features in ℑ  that will affect reduct pik. 

Since each missing value can either support (i.e 

Mxj =fjk and d(x) = di), have no effect (i,e Mxj ≠ fjk 

and d(x) = di) or contradict ( i,e Mxj =fjk and d(x) 
≠  di) reduct pik. there are T=2

t cases to be 

considered. Let q be the index of these cases, 

where q = 1, …, T. 

    Now for each case q, let 

   Mxjq = the assignment of the missing value 

Mxj under case q. 

    jqθ = the number of objects in U who 

missing values under feature j, Mxjq, is assigned fjk. 
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iqζ = the number of objects in Di whose 

missing values are assigned values in support of 

reduct pjk under q, i,e 

iqζ = }|{ jkxjqi

j

fMDx =∈
ℑ∈

I  

qζ = the number of objects in U whose missing 

values are assigned under case q the exact same 

pattern as in reduct pjk, i,e 

qζ = }|{ jkxjq

j

fMUx =∈
ℑ∈

I  

Again it is easy to see that qζ =∑
i

qζ  

Also let Ek = {x U∈ | Fj(x) = fjk, j∈ ℑ  }, which 

is the set of objects that have exactly the right 

combination of values of features in ℑ  used to 

form reduct pjk (but not necessarily have their 

decision values equal to di).  

kη = | Ek |, which is the number of objects in Ek. 

 

Eik = Ek ∩ Di, which is the number of objects 

that completely support reduct pjk. 

     ikη = | Eik |, which is the number of objects 

in Eik. 

      Finally, let Ekq be the set of objects whose 

feature values Fj(x) and /or missing values Mxjq 

are assigned fjk, j∈ ℑ under case q. That is: 

 Ekq = Ek ∪ {x U∈ | Mxjq = fjk, j ∈ ℑ }= 

Ek ∪ (I
ℑ∈j

{x U∈ | Mxjq = fjk }  

Due to the disjoint of the two sets in the union 

on the right hand side, gives this: 

|Ekq| = |Ek|+| (I
ℑ∈j

{x U∈ | Mxjq= fjk }| = kη + qζ  

Thus the probability that reduct pik will predict 

correctly if the associated missing values have 

their values distributed according to case q is: 









ℑ∈== qcasejfxFdxdp jji |],)(|)([

 

= Aiq = 

kq

ikq

E

DE ∩
 

   = 

kq

jkxjqiik

E

jfMDxDE ℑ∈=∈+∩ ,|{
 

(Due to the disjoint of the two sets in the union in 

the numerator) 

Hence    Aiq = 
qk

iqik

ζη

ζη

+

+
----------------------(7) 

Note that  

  ∑
i

Aiq = 

qk

iq

i

ik

i

ζη

ζη

+

+∑∑
 = 

qk

qk

ζη

ζη

+

+
 = 1 

as required by the property of probability 

functions. 

Now we can compute the probability Pik that 

reduct pik will predict correctly under any  

scenario of the missing values as: 

Pik= ( )ℑ∈== jfxFdxdp jji ,)(|)( = ∑
q









ℑ∈== qcasejfxFdxdp jji |],)(|)([ (8) 

P(case q)= ∑
q

AiqP(case q) 

where  P(case q) = P( ℑ∈jjq ,θ ) 

= ∏
ℑ∈

−
−

j

t

jj

jqjjq BB
θθ

)1()( ---(9) 

Bj = prob(Mxjq = fjk) = 
jV

1
, Vj = number of 

possible values of feature j Thus           

 Pik = ∑ ∏
= ℑ∈

−











−

T

jqjjq

q j

t

jjiq BBA
1

)1()(
θθ

-------(10) 

Equation (10) is a legitimate probability 

distribution since; for reduct pik 

∑
i

ikP = ∑ ∑ ∏ 























−

= ℑ∈

−

i q

iq

j

t

jj

T

jqjjq ABB
1

)1()(
θθ = 



















− ∑∑ ∏

= ℑ∈

−

i

iq

q j

t

jj ABB

T

jqjjq

1

)1()(
θθ

= 

∑ ∏
= ℑ∈

−











−

T

jqjjq

q j

t

jj BB
1

)1()(
θθ

----------------(11) 

Since ∑
i

iqA = 1 

Without lost of generality, let ℑ = { 1, 2, …, J}. 

Now for each j say j = 1, if we hold the values of 

Mxj for all j ≠ 1 and Ux ∈ at a particular pattern 

(out of 
∑

≠12 j

jt

patterns), there will be 12
t

possible 

ways that we can assign Mx1, Ux ∈ . The 

summation of  qq t

jj BB 111 )1(
θθ −

−  over q over all 

those 12
t

 patterns is equal to 
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( )qq

x

t

t

jj

UxofM
patternsq

BB 111

1

1

)1(

,
2

θθ −

∈
∈

−∑  = 

∑
=








1

1 0 1

1

t

q
q

t

θ
θ

qq t

jj BB 111 )1(
θθ −

−  = 1 

Thus             

∑
i

ikP = ( )jqjjq

x

j

jt

t

jj

UxjjM
patternsofq

BB
θθ −

∈≠ℑ∈
∈

−
∑

∏∑
≠

1

1

1

)1(

,1,,
2

 

Applying the same argument to j = 2, 3, … 

until j=J, we thus have: 

   ∑
i

ikP = ∑
=










J

Jq

t

Jq

Jt

0θ θ
JqJJq t

jj BB
θθ −

− )1( = 1 

Hence we have shown the require property for 

Pik be a proper probability function. 

 The following examples illustrate the use of 

the above formula. 

 

 

Example 2 
                         F1   F2    F3   d  
                           M11     0      0     0 

                            0         0      1     0 

                            1         1      0     0 

                            1       M42   0     0 

                            2        0      0      0 

                            2        1    M63   0 

                            1        0     1      1 

                            2        1     0      1 

                            2        1      1     1 

                            2        1      1     1 

If we like to compute the probability of a two-

feature reduct  p “ 1 0 NaN  1” ( If  F1=1 &F2=0 

then d=1) from the decision table above. The 

element sets for feature 1 and 2 before 

considering the possibility of missing values M11 

and M42 are: 

                     E1={2} for F1=0, F2=0 

                     E2={3} for F1=1, F2=1 

                     E3={5} for F1=2, F2=0 

                     E4={6, 8, 9, 10} for F1=2, F2=1 

                     E5={7} for F1=1, F2=0 

                     D1={1, 2, 3, 4, 5, 6} for d1=0. 

                     D2={7, 8, 9, 10} for d2=1. 
We know that reduct p is induced from object 

7∈E5 and d(7) = 1∈d2. As shown in decision table, 

there are two missing values, M11 and M42, will affect 

the probability of reduct p. Hence t=t1+t2=2 and 

T=2
2
=4 cases. We say M11=1 and M42=0 are 

successes and B1=1/3, B2=1/2. 

First we compute the probability Aiq for each 

case q.  

Let i=2, k=5. 

Case 1: M11 
≠ 1, M42

≠ 0 

Then there is no object whose missing values 

are assigned fjk. We get: 

11θ =0, 21θ =0, 21ζ =0, 1ζ =0 and  

5η = |E5| = |{7}| =1 

25η =| E51 ∩ D2|=  | E5 ∩ D2|  = |{7}| =1 

From (4)  

A21 = 
15

2125

ζη

ζη

+

+
 = 

01

01

+

+
 =1 

Case 2: M11 
≠ 1, M42 =0 

Then there is one object (x4) whose missing 

values are assigned fjk. We get: 

12θ =0, 22θ =1, 22ζ =0, 2ζ =1 and  

A22 = 
25

2225

ζη

ζη

+

+
 = 

11

01

+

+
 =1/2 

Case 3: M11 =1, M42 
≠ 0 

Then there is one object (x1) whose missing 

values are assigned fjk. We get: 

13θ =1, 23θ =0, 23ζ =0, 3ζ =1 and  

A23  = 
11

01

+

+
 =1/2 

Case 4: M11 =1, M42 =0 

Then there are two objects (x1 and x4) whose 

missing values are assigned fjk.  

We get: 

14θ =1, 24θ =1, 24ζ =0, 4ζ =2 and  

A24 = 
25

2225

ζη

ζη

+

+
 = 

21

01

+

+
 =1/3 

Therefore, from (5) we compute the probability 

Pik of reduct p: 

P25 =  ∑ ∏
= =

−











−

4

1

2

1

)1()(
q j

t

jjiq
jqjjq BBA

θθ
 

= 

1010

2

1
1

2

1

3

1
1

3

1
1 








−
















−








×  

+ 

0110

2

1
1

2

1

3

1
1

3

1

2

1








−
















−








×  

+ 

1001

2

1
1

2

1

3

1
1

3

1

2

1








−
















−








×  

+ 

0101

2

1
1

2

1

3

1
1

3

1

3

1








−
















−








×  

=23/36=63.89% 

 

4. CONCLUSION 
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In this paper, we propose a mathematic method 

to calculate the plausibility and probability of 

possible rules Based on the binomial distribution 

model, the probabilistic function (Pik) depends on 

the probability of missing value Bj for each 

feature j in ℑ. Here, we assume that each missing 

entry will have an equally likely chance to 

assume each of the Vj possible values of the 

corresponding feature j.  

An alternative approach to estimate Bj is based 

on the degree of belief of the assessor, who may 

in turn have relevant knowledge and experiences 

to provide inputs for such estimate. If this is the 

case, then Dempster-Shafer’s theory of evidence 

is an appropriate mathematical tool to help in the 

estimation. 

REFERENCES 

[1] Z. Pawlak,. Rough Sets, International 

Journal of Computer and Information 

Sciences, 11(1982).341-356. 

[2] J. Grzymala-Busse., Managing 

Uncertainty in Expert Systems, Kluwe 

Boston, (1991). 

[3] L.P. Khoo,  S.B.Tor, .L.Y. Zhai, 

Rough Set-based Approach to 

Classification and Rule Induction, 

International Journal of Advanced 

Manufacturing Technology, Spriger-

Verlag, 15(1999)438-444. 

[4] J. W. Grzymala-Busse., On the 

unknown attribute values in learning 

from examples, Methodologies for 

Intelligence Systems, Sixth 

International Symposium (ISMIS’ 91), 

[5] Lecture Notes in Artificial Intelligence, 

Charlotte, NC,  542(1991)16-19. 

[6] W. Ziarko., Analysis of uncertain 

information in the framework of 

variable precision rough sets, Fund. 

Computing Decision Science, 

18(1993)381-396. 

[7] S. Greco, B. Matarazzo, R. Slowinski, 

Rough approximation by dominance 

relation, International Journal of 

Intelligent Systems 17(2002) 153–171. 

[8] Z. Pawlak, A. Skowron, Rudiments of 

rough sets, Information Sciences 177 

(2007) 3–27. 

[9] Z. Pawlak, A. Skowron, Rough sets: 

some extensions, Information Sciences 

177 (2007) 28–40. 

[10] S.K. Pal, Soft data mining 

computational theory of perceptions 

and rough-fuzzy approach, 

Information Sciences 163 (1–3) (2004) 

5–12. 

[11] S. Tsumoto, Mining diagnostic rules 

from clinical databases using rough 

sets and medical diagnostic model, 

Information Science 162(2) (2004) 

65–80. 

[12] Y.-Y. Guan, H.-K. Wang, Set-valued 

information systems, Information 

Sciences 176 (2006) 2507–2525 

[13] T.P. Hong, L.-H. Tseng, S.-L. Wang, 

Learning rules from incomplete 

training examples by rough sets, 

Expert Systems with Applications 22 

(2002) 285–293. 

[14] Y. Leung, D.Y. Li, Maximal 

consistent block technique for rule 

acquisition in incomplete information 

systems, Information Sciences 153 

(2003) 85–106. 

[15] Y. Leung, W.-Z. Wu, W.-X. Zhang, 

Knowledge acquisition in incomplete 

information systems: a rough set 

approach, European Journal of 

Operational Research 168 (2006) 164–

180. 

[16] M.-W. Shao, W.-X. Zhang, 

Dominance relation and rules in an 

incomplete ordered information 

system, International Journal of 

Intelligent Systems 20 (2005) 13–27. 

[17] J. Stefanowski, A. Tsoukias, 

Incomplete information tables and 

rough classification, Computational 

Intelligence 17 (2001) 545–566. 

[18] W.-X. Zhang, J.-S. Mi, Incomplete 

information system and its optimal 

selections, Computers and 

Mathematics with Applications 

48(2004) 691–698. 

[19] .R..Slowinski,. J.Stefanowski., Rough 

classification and incomplete 

information system, Mathematical and 

Computer Modeling, 12(1989)1347-

1357. 

[20] I. Kononenko, I. Bratko, E. Roskar, 

Experiments in automatic learning of 

medical diagnostic rules, Technical 

Report, Jozef Stefan Institute, 

Ljubljana, Yugoslavia, 1984. 

[21] J.R. Quinlan, Induction of decision 

trees, in: J.W. Shavlik, T.G. Dietterich 

(Eds.), Readings in Machine Learning, 



 9 

 

Morgan Kaufmann, Los Altos, CA, 

(1990), 57–69. 

[22] .M.R.Chmielewski. J.W.Grzymala-

Busse, N.W.Peterson, S.Than,. The 

rule induction system LERS-A version 

for personal computers, 

Found.Comput.Decision Science 

18(1993)181-212. 

[23] .P.J. Lingras, Y.Y. Yao, Data Mining 

using extensions of the Rough Set 

model, Journal of the American 

society for information science. 

49(5)(1998)415-422. 

[24] .P.J. Lingras, Plausibilistic rule 

extraction from incomplete databases 

using non-transitive rough set model, 

Proceedings of the twenty-third 

Computer Science Conference 

(CSC’95) orkshop on Rough sets and 

Database Mining(1995).. 

[25] M. Kryszkiewicz., Rough set approach 

to incomplete information systems, 

Information Sciences ,112(1998)39-49. 

[26] T.Q. Deng, Y.M. Chen, W.L. Xu, Q.H. 

Dai, A novel approach to fuzzy rough 

sets based on a fuzzy covering, 

Information Sciences 177 (2007) 

2308–2326 

[27] T.P. Hong, T.T. Wang, S.L. Wang, 

Mining fuzzy b-certain and b-possible 

rules from quantitative data based on 

the variable precision rough-set model, 

Expert Systems with Applications 32 

(2007) 223–232. 

[28] T.P. Hong, T.T. Wang, S.L. Wang, 

Knowledge acquisition from 

quantitative data using the rough-set 

theory, Intelligent DataAnalysis 4 

(2000) 289–304. 

[29] R. Jensen, Q.A. Shen, Fuzzy-rough 

sets assisted attribute selection, IEEE 

Transactions on Fuzzy Systems 15 

(2007) 73–89. 

[30] X. Wang, E.C.C. Tsang, S. Zhao, D. 

Chen, D.S. Yeung, Learning fuzzy 

rules from fuzzy samples based on 

rough set technique, 

Information Sciences 177 (2007) 4493–4514. 

[31] M.Kryszkiewicz,.Rules incomplete 

information systems,” Information 

Sciences,113(1999)39-49 

[32] B.Walczak. D.L. Massart.. Rough sets 

theory, Chemometrics and intelligent 

laboratory systems, 47(1999)1-16. 

[33]  Pawlak, Z., 1991. Rough Sets: 

Theoretical Aspects of Reasoning 

About Data, 9, Kluwer Boston. 
 


