
AIT 2010

2010 International Conference on Advanced Information Technologies (AIT)

The New Territory of Agreement

with Fallible Processes in a Cloud Computing
M.L. Chiang

1
, S.C. Wang

2*
, K.Q. Yan

3
, C.P. Huang

4
, L.Y. Tseng

5

1mlchiang@cyut.edu.tw

*2scwang@cyut.edu.tw
3
kqyan@cyut.edu.tw

4
s9714625@cyut.edu.tw

5d918305@oz.nthu.edu.tw

Chaoyang University of Technology
*Corresponding author

Abstract—The cloud computing, an Internet-

based development in which dynamically

scalable and often virtualized resources are

provided as a service over the Internet has

become a significant issue. In a cloud

computing environment, the multiple services

of application platform are provided for users

to achieves high reliability and ensure the

ability to be better. There are many

applications running synchronously in the

service platform of cloud computing. However,

the agreement problem is fundamental to

fault-tolerant distributed systems. But, all

previous studies of the agreement problem

were visited in a network topology with faulty

hardware components. But, in a cloud

computing environment, there are a lot of

application processes to provide the services of

users. And, the influence of faulty process is

different with the influence of faulty hardware

component. Therefore, previous protocols for

the agreement problem are not suitable for a

cloud computing environment with fallible

processes. To enhance fault tolerance, the

agreement problem in a cloud computing

environment with fallible processes is revisited

in this paper. The proposed protocol can solve

the agreement problem with a minimal

number of rounds of message exchange and

tolerates a maximal number of faulty

processes.

Keywords—Agreement problem; Byzantine

agreement; Consensus problem; Interactive

consistency; Distributed system; Fault

tolerance; Cloud computing

1. INTRODUCTION

The new concept of cloud computing allows

for more applications for internet users

[1,3,9,11,14,21]. In the real world, the distributed

system has to provide better reliability and

fluency with service applications. Today, network

bandwidth and hardware technology advance

continuously to keep pace with the vigorous

development of the Internet. Cloud computing is

currently used many commodity nodes that can

cooperate to perform a specific service together.

In addition, the internet applications are

continuously enhanced with multimedia, and

vigorous development of the device quickly

occurs in the network system [1,9,14]. As

network bandwidth and quality outstrip computer

performance, various communication and

computing technologies previously regarded as

being of different domains can now be integrated,

such as telecommunication, multimedia,

information technology, and construction

simulation. Thus, applications associated with

network integration have gradually attracted

considerable attention.

The users can use the application platform of

cloud computing to execute the personal software

or program in their capacity of account. In a

cloud computing environment, users can access

the operational capability faster with internet

application [14], and the computer systems have

the high stability to handle the service requests

from many users in the environment. Today, a

new application service of operation system is

emerged and it changes the user’s usage in the

past. Originally, the internet infrastructure is

continuous grow that many application services

can be provided in the Internet. In a distributed

computing system, components allocated to

AIT 2010

2010 International Conference on Advanced Information Technologies (AIT)

different places or in separate units are connected

so that they may collectively be used to greater

advantage [4]. The reliability is improved in a

cloud computing environment by using the low-

power hosts. In addition, cloud computing has

greatly encouraged distributed system design and

application to support user-oriented service

applications [11]. Furthermore, many

applications of cloud computing can increase

user convenience, such as YouTube [14].

Component reliability is one of the most

important aspects of cloud computing as it

ensures overall reliability and fluency. Thus, the

processes in a distributed system must be

synchronously completed and all nodes of cloud

computing environment must achieve common

agreement. To ensure the cloud computing

environment is reliable, a mechanism to ensure

that all nodes can reach an agreed value is thus

necessary.

The Internet platform of cloud computing

provides many applications for users, just like

video, music et al. Therefore, each node of a

cloud computing environment needs to run many

processes and needs to execute user’s requests

synchronously. In the cloud computing

environment, each node passes messages through

transmission media to other nodes to

cooperatively complete user requests. Many users

in the cloud computing environment can execute

application services simultaneously. Therefore,

the high fault-tolerant capability of a cloud

computing environment needs to be considered.

However, the symptoms of faulty processes can

influence the normal operation of a system. The

cloud computing system can tolerate the faulty

processes in the service environment because the

system should respond to user requests quickly

and completely the user requests as service. The

requisite large number of nodes maybe meet

some nodes will be fault to introduce faulty

processes into the system. However, the system

must allow for the tolerance of faults while

maintaining functionality. Simultaneously, in the

cloud computing environment, nodes receive the

user’s requests maybe influence by the faulty

processes. Hence, to remove the affect of faulty

processes needs to be mitigated. In a cloud

computing environment, achieving perfect

reliability must be accomplished by allowing a

given set of nodes to reach a common agreement

even in the presence of faulty processes. The

agreement problem has been studied in the

literature [5,7,10,12,13,15]. The agreement

problem is one of the most important issues for

designing a fault-tolerant distributed system

[6,8,12]. Solving the agreement problem, many

applications can be achieved [6,8,12]. Therefore,

the agreement problem in a cloud computing

environment with faulty processes is revised in

this paper. The proposed protocol is named

Processes Failure of Cloud computing (PFC in

short) and can lead to an agreement of all correct

nodes in a cloud computing environment.

The rest of this paper is organized as follows.

Section 2 discusses the applications of cloud

computing and the topology of cloud computing.

The related issues of agreement problem are

illustrated in Section 3. Then, the proposed

protocol PFC is introduced and illustrated in

detail in Section 4. In Section 5, an example of

the execution of the proposed protocol is given.

Section 6 demonstrates the correctness and

complexity of PFC. Section 7 concludes this

paper.

2. RELATED WORK

In previous literatures, the agreement problem

has been solved in various network topologies

with hardware fault. However, previous studies

of the agreement problem [17] do not specifically

address the cloud computing with faulty

processes to order the application of internet.

Hence, in this section, the applications of cloud

computing are illustrated first. Then, the network

construction of cloud computing is discussed.

Subsequently, three kinds of agreement problem

are shown.

2.1 Practical Applications

Cloud Computing is a kind of distributed

computing where massively scalable IT-related

capabilities are provided to multiple external

customers “as a service” using internet

technologies [14]. The cloud providers have to

achieve a large, general-purpose computing

infrastructure; and virtualization of infrastructure

for different customers and services to provide

the multiple application services. The ZEUS

Company has developed several types of

software [17] that can create, manage, and deliver

exceptional online services from physical and

virtual datacenters or from any cloud

environment, such as ZXTM [18] and ZEUS Web

Server (ZWS) [20], as shown in Fig. 1 [22].

A cloud infrastructure virtualizes large-scale

computing resources and packages them up into

smaller quantities [22]. Furthermore, the ZEUS

AIT 2010

2010 International Conference on Advanced Information Technologies (AIT)

Company develops software that can let the cloud

provider easily and cost-effectively offer every

customer a dedicated application delivery

solution [23]. The ZXTM software is much more

than a shared load balancing service and it offers

a low-cost starting point in hardware

development, with a smooth and cost-effective

upgrade path to scale as your service grows [23].

The concept is shown in Fig. 2.

Fig. 1. The resource of cloud infrastructure with

virtualization [22]

Fig. 2. The high performance load balance of

ZXTM

The ZEUS provided network framework can

be utilized to develop new cloud computing

methods [17,23], and is utilized in the current

work. In this network composition that can

support the network topology of cloud computing

used in our study [20,22]. According to the ZEUS

network framework, a network topology of cloud

computing is proposed to solve the agreement

problem.

2.2 Network Topology

Cloud computing is a new distributed system

concept that has been implemented by businesses

such as Google [21] and Amazon [16]. Google

provides various applications on their internet

platform such as Gmail and YouTube [21]. In

addition, Google provides free storage capacity

with gigabytes for each user. The big and

powerful Google search engine allows users to

find multiple results from different file types on

the Internet. In previous literature, the agreement

problem has been solved in various network

topologies. However, previous studies of

agreement problems [2,5,6,7,8,10,12,13,15] are

not specifically address cloud computing to order

the application of internet. Hence, in this paper,

the topology of a cloud computing environment

is applied. Subsequently, the agreement problem

with fallible processes in the topology of a cloud

computing is discussed. Cloud computing is a

new distributed system computing concept in

which nodes are interconnected with the internet;

the network is assumed reliable and synchronous.

Fig. 3 is the topology of cloud computing used in

this paper. The topology is composed of two

levels, as follows:

Fig. 3. Example of topology of cloud computing

(1) The nodes in an A-Level group receive the

service requests from users of different

types of applications. Therefore, the nodes

of an A-Level group have higher

computational capability than the nodes in a

B-Level group. In addition, nodes in an A-

Level group compute enormous amounts

data and can communicate with other nodes

in the same group directly through

transmission media (TM).

(2) Some nodes are formed into a cluster in a

B-Level group, where each cluster provides

a specific application service. According to

the properties of nodes, the nodes are

clustered to cluster Bi where 1≤i≤Cnum and

Cnum is the total number of clusters in a B-

Level group.

AIT 2010

2010 International Conference on Advanced Information Technologies (AIT)

(3) For the reliable communication, multiple

inter transmission media (ITM) are used to

connect the nodes between an A-Level

group and a B-Level group. In an A-Level

group, each node must forward the message

to all nodes in the corresponding cluster of

the B-Level group.

However, a node is said to be correct if it

follows the protocol specifications during the

execution of a protocol. The fault symptom of

process is called disorderly fault. The behaviour

of a disorderly fault is the fault can cause other

components cannot complete work correctly and

synchronously. A disorderly faulty process takes

place when a node fails to transmit the fake

messages and other nodes receive the same fake

messages. However, the behavior of disorderly

faulty process is unpredictable and to confuse

other nodes to receive incorrect messages to

complete a specific service for user. Therefore,

the disorderly faulty processes will influence

each node in the system finish user’s request

synchronization. Here, a solution of the

agreement problem in the cloud computing

environment with disorderly faulty processes is

presented.

3. THE RELATED ISSUES OF

AGREEMENT PROBLEM

In order to handle the applications more

correctly in the cloud computing environment,

the agreement problem is a very important topic.

Simply, the cloud computing must achieve an

agreement before any applications executing.

Traditionally, the agreement problem is classified

into three kinds: Byzantine Agreement (BA)

problem, consensus problem and interactive

consistency problem.

3.1 Agreement Problems

The BA problem is one of the most

fundamental problems concerning reaching

agreement in distributed systems [5]. First

studied by Lamport, it is a well-known paradigm

for achieving reliability in a distributed network

of nodes [5]. According to the definition of the

BA problem by Lamport:

1) There are n nodes, of which at most (n-

1)/3 nodes could fail without breaking

down a workable network;

2) The nodes communicate with each other

through message exchange in a fully

connected network;

3) The message sender is always

identifiable by the receiver;

4) A node is chosen as a source, and its

initial value vs is broadcasted to other

nodes and itself to execute the protocol

[5].

A closely related sub-problem of the BA

problem, the consensus problem, has been

studied extensively in the literature [6,8,12]. In

this paper, the consensus problem is revised in a

cloud computing environment. The consensus

problem requires a protocol to allow the

components to exchange messages then the

correct components are to achieve consensus.

Hence, the consensus is reached if the following

constraints are met:

Agreement: All correct nodes agree on a

common value vi.

Validity: If the initial value of each correct

node is vi, then all correct nodes shall

agree on the initial value v the source

node sends, v=vi.

Another closely related sub-problem, the

interactive consistency problem has been studied

extensively [2]. The definition of the problem is

to make the correct nodes in an n-node

distributed system reach interactive consistency.

Each node chooses an initial value and

communications with the others by exchanging

messages. There is interactive consistency in that

each node i has its initial value vi and agrees on a

set of common values. Therefore, interactive

consistency has been achieved if the following

conditions are met:

Agreement: Each correct node agrees on a set of

common values V=[v1,v2,…,vn].

Validity: If the initial value of each correct

node is vi, then the i-th value in the

common vector V should be vi.

In this paper, the agreement problem with

fallible processes in the cloud computing

topology is revised. The problem requires all

correct nodes to reach agreement when some of

components might be faulty. A distributed system

can attain stable results without any influence

from faulty components. However, in many cases,

the faulty components will influence the system

to reach agreement.

In this paper, the solutions with the interactive

consistency problem in an A-Level group and the

consensus problem in a B-Level group are

AIT 2010

2010 International Conference on Advanced Information Technologies (AIT)

considered. Finally, the service applications of

user’s request can be completed.

3.2 The Types of Failure Processes

The processes fault is called the disorderly

fault. The symptoms of disorderly fault that such

fault always sends the constant value and it

means processes in the node running overflow or

procedure of operation system execute buffering.

In the service platform of cloud computing where

the nodes have to ensure all applications can be

stable provided for users. If a process is in the

abnormal state of the specific service cluster then

the application cannot to be provided. When the

operation system is running unstable or the

memory capacity is not enough or the interrupt of

process is happened, then the disorderly faulty

processes is occurred in the node. However, in

this paper the disorderly faulty processes that the

general point is mean the software failure. In this

definition, the disorderly faulty processes will

send the unreliable messages to other nodes and

receive the same messages that have been

changed. The disorderly fault represents the

behavior of a disorderly faulty process is unstable.

The correct processes can transmit messages on

time or correctly and complete applications

synchronously, but the disorderly faulty

processes may be inconsistent. In other words,

the disorderly faulty processes cannot send

correct messages.

4. THE PROPOSED PROTOCOL

Cloud computing environment can provide

multiple services [9,14,21]. In this paper, the

agreement problem is revisit in a cloud

computing environment where disorderly faulty

processes may influence services provide

normally. In this paper, a new protocol called

Processes Failure of Cloud computing (PFC in

short) is proposed to solve the agreement

problem when caused by disorderly faulty

processes that may send incorrect messages to

influence the cloud computing environment to

reach agreement. When the disorderly faulty

processes exist in the cloud computing

environment then two rounds of message

exchange required can be estimated to solve the

agreement problem. For instance, if the faulty

component is a disorderly faulty process, then

PFC can save some rounds required to remove

the influence from this disorderly faulty process.

In the cloud computing topology, the main work

of an A-Level group’s nodes is collecting user

requests. Each node in an A-Level group receives

the various requests from users, while the nodes

in a B-Level group’s cluster provide many

services for users. Hence, all nodes may receive

different initial values different two level groups.

The protocol PFC is executed by nodes in the X-

Level groups, where X is the A or B-Level group.

Therefore, the interactive consistency problem in

an A-Level group is discussed first, and then the

consensus problem in a B-Level group is

explained.

In this paper, the protocol PFC is proposed to

reach an agreement in a cloud computing

environment. Each node in an A-Level group that

uses the service request as the initial value

executes the PFC to obtain the common vector

DECA. Therefore, in an A-Level group we will be

executed PFC to solve the interactive consistency

problem by nodes in an A-Level group receives

multiple initial values. After each node of an A-

Level group has been obtained the common

vector value (DECA), then each node of the A-

Level group forwards the element of vector

DECA to the nodes in the B-Level group.

However, the specific service request can be

conformed by the nodes of the same group.

Each node in the same cluster of a B-Level

group receives the element from the nodes of the

A-Level group. In the B-Level group, nodes may

receive the fake value by the disorderly faulty

processes in an A-Level group. The nodes in a B-

Level group receive the fake value from failure

processes of A-Level group through correct

transmission media. Therefore, the number of A-

Level group’s failure processes must be less than

half with those processes.

Sequentially, each node in the same cluster of

a B-Level group has to take majority value of the

received element values (DECA). Hence, the

initial value for each node can be obtained in the

same cluster of a B-Level group. Nodes in the

same cluster of a B-Level group must exchange

and receive the initial value with other nodes by

executing the Implementation Process. Finally,

each node takes a majority value to get the DECB

value. Then the consensus value can obtained by

the PFC. PFC is invoked to solve the agreement

problem with disorderly faulty processes in cloud

computing. Based on the network topology of

cloud computing, PFC can allow each node to

transmit messages to other nodes without

influence from disorderly faulty processes, the

proposed protocol is shown in Fig. 4. The PFC

executes the follow steps:

AIT 2010

2010 International Conference on Advanced Information Technologies (AIT)

Step 1: The nodes of an A-Level group execute

the Implementation Process to obtained

DECA (vector value) (for the node i in an

A-Level group with initial value vi;

1≤i≤nA, where nA is the total number of

nodes in the A-Level group).

Step 2: Each node of the cluster in an A-Level

group sends the specific element of DECA

to the nodes of a specific application

having the cluster of a B-Level group.

Step 3: Each node k in the same cluster of the B-

Level group takes a majority value MAJk

(1≤k≤nBj, where nBj is the total number of

nodes in the cluster j of a B-Level group)

of the received element, then the initial

value vk of each node k can be obtained.

Step 4: The nodes of a B-Level group’s cluster

execute the Implementation Process (for

the node i in the cluster j of a B-Level

group with common value vi; 1≤i≤nBj).

Step 5: Each node of the same cluster in a B-

Level group takes a majority value from

DECB, and then the consensus value v

(single value) is obtained.

PFC

Implementation Process(i, n, X-Level group)

Message Exchange Phase:

r = 1

A) Each node i parallel broadcasts its initial value

vi to other nodes in the cluster of an X-Level

group.

B) Each node receives and stores the n values

sent from n nodes of the cluster in an X-Level

group in the corresponding root of each mg-

tree.

r = 2

C) Each node parallel transmits the values at

level r-1 in the corresponding mg-tree to other

nodes in the cluster of an X-Level group.

D) Each node receives values from other nodes

and stores them in level r of n corresponding

mg-trees.

Decision Making Phase:
Step 1: Reorganize each mg-tree into a

corresponding ic-tree by deleting the

vertices with repeated node names.

Step 2: VOTE(i,n) function is paralleled to apply

to the root of each corresponding ic-tree,

then a vector DECX as a common value

with n elements has been obtained.

Function VOTE(i,n)
1. The val(i), if i is a leaf.

2. The majority value in the set of {VOTE (αi,

n)|1≤i≤n, and vertex αi is a child of vertex α},

if such a majority value exists.

3. A default value φ is chosen otherwise.

Fig. 4. The proposed protocol PFC

The node in a B-Level group’s cluster receives

the initial value through the PFC. The

Implementation Process of PFC requires two

rounds to receive sufficient messages for the A-

and B-Level groups’ nodes. In the first round of

Message Exchange Phase, each node parallel

transmits its initial value to other nodes in the

same cluster, then receives the value, and stores it

at the r-1 level of its mg-tree. The mg-tree is a

tree structure that is used to store the received

messages [15]. Subsequently, each node in the

same cluster transmits the received messages to

other nodes and stores it at level r in its mg-tree.

In the Decision Making Phase of Implementation

Process, each node reorganizes its mg-tree into a

corresponding ic-tree. The ic-tree is a tree

structure that is used to store a received message

without repeated node names [15]. The function

VOTE is applied to the root of each

corresponding ic-tree to take the majority value,

and then a vector value DECA is obtained. Each

element of DECA is mapped to a specific

application that will be executed in the

corresponding cluster of a B-Level group. Each

node of the same cluster in the B-Level group

takes a majority value as the initial value from

the vector. Sequentially, each node in the same

cluster executes the Message Exchange Phase of

Implementation Process and reorganizes its mg-

tree into a corresponding ic-tree. Then, the

function VOTE is applied to obtain the consensus

value. Finally, all correct nodes in the same

cluster are achieved with a consensus value as

DECB to reach agreement.

5. EXAMPLES OF EXECUTING PFC

An example of executing the PFC based on a

cloud computing environment is shown in Fig. 5.

In addition, an example of an A-Level group is

shown in Fig. 6-1 and 6-4. The nodes in an A-

Level group receive service requests. The

protocol, for this example, requires two rounds to

exchange the messages. Each node can obtain the

initial value in the A cluster as shown in Fig. 6-2.

The different requests are received from different

users by each node, such as A1 receives the video

service request and A5 receives the blog service

request, etc. In each round of the Message

Exchange Phase, each node parallel transmits the

AIT 2010

2010 International Conference on Advanced Information Technologies (AIT)

initial value to all nodes in the same cluster and

stores the received values in the corresponding

root of the mg-tree as shown in Figs. 6-3 and 6-5.

Subsequently, in the Decision Making Phase, the

mg-tree is reorganized into the ic-tree by deleting

the vertices with repeated node names as shown

in Fig. 6-6. The function VOTE is applied to each

corresponding ic-tree of all nodes and then taking

the majority value. Eventually, the common

vector value DECA is obtained for all nodes in an

A-Level group as shown in Fig. 6-7.

All nodes in the cluster of a B-Level group

receive the element DECA from the nodes of an

A-Level group by multiple transmission media

that the example as shown in Fig 7. All nodes in

cluster BⅡ-1 of a B-Level group receive the

element of value DECA that transmits from the

nodes in an A-Level group for the specific

applications needing to be serviced. If the nodes

in an A-Level group send the E-mail service

request with elements of DECA to all nodes in

cluster BⅡ-1. Subsequently, the elements of

DECA can receives with each node in cluster

BⅡ-1 receives the elements of DECA, and then

takes a majority value as shown in Fig. 8.

The example of cluster BⅡ-1 in a B-Level

group is presented in Fig. 9-1 and 9-4. In this

example, there are six nodes in cluster BⅡ-1 and

requiring two rounds of message exchange. Fig.

9-2 presents each node’s initial value. In the first

round of Message Exchange Phase, the node

sends the initial value (=1) to other nodes and

receives the initial value from other nodes in the

same cluster as shown in Fig. 9-3. The node B1

to executing the second rounds of Message

Exchange Phase as shown in Fig. 9-5. In the

Decision Making Phase, the node B3’s mg-tree is

reorganized into the corresponding ic-tree as

shown in Fig 9-6; and the function VOTE is

applied on the ic-tree’s root to take the majority

value as DECB, then a consensus value (=1) is

obtained as shown in Fig. 9-7. Hence, the

consensus value has been obtained and all correct

nodes reach agreement.

6. THE CORRECTNESS AND

COMPLEXITY

According to the literature, a protocol is

obtained and the following proofs for the

agreement and validity property are given in this

section. The following lemmas and theorems are

used to prove the correctness and complexity of

the Processes Failure of Cloud computing (PFC

in short). The notations and parameters of PFC

are shown as follows:

n: The number of nodes in the cloud

computing environment.

TMij: The transmission media between node

i and node j.

ITM: The transmission media between A-

level group and B-level group.

c: The connectivity of network topology.

cA: The connectivity in an A-Level group.

cBj: The connectivity in the cluster j of a

B-Level group.

ITMBj: The connectivity with each node of the

j cluster in B-Level group between an

A-Level group.

ITMBjc: The connectivity with each node in the

cluster j of a B-Level group.

nA: The number of nodes in an A-Level

group.

nBj: The number of nodes in the cluster j of

a B-Level group.

Cnum: The total number of clusters in a B-

Level group.

NfpA: The number of allowable disorderly

faulty processes in an A-Level group.

NfpBj: The number of allowable disorderly

faulty processes in the cluster j of a B-

Level group.

Nfp: The number of allowable disorderly

faulty processes in the cloud

computing environment.

tfA: The number of allowable disorderly

faulty processes in an A-Level group.

tfB: The number of allowable disorderly

faulty processes in a B-level group.

Tf: The total number of allowable

disorderly faulty processes.

σ: The number of rounds required in the

Implementation Process.

AIT 2010

2010 International Conference on Advanced Information Technologies (AIT)

Fig. 5. An example of cloud computing environment

A1

A2

A3

A4

A-Level

group

A5

A6
A7

: Correct Node : Correct TM

: Disorderly Faulty Processes as Node
Fig.6-1. Example cluster A in an A-Level group with

the 1st round

A1 A2 A3 A4 A5 A6 A7

0 1 0 1 0 1 0

Fig. 6-2. The initial value of each node in A cluster

level 0 Root level 1 level 0 Root level 1 level 0 Root level 1 level 0 Root level 1

A1 1 0 A2 1 0 A3 1 0 A4 1 0

 2 0 2 0 2 0 2 0

 3 1 3 1 3 1 3 1

 4 1 4 1 4 1 4 1

 5 0 5 0 5 0 5 0

 6 0 6 0 6 0 6 0

 7 0 7 0 7 0 7 0

level 0 Root level 1 level 0 Root level 1 level 0 Root level 1

A5 1 0 A6 1 0 A7 1 0

 2 0 2 0 2 0

 3 1 3 1 3 1

 4 1 4 1 4 1

 5 0 5 0 5 0

 6 0 6 0 6 0

 7 0 7 0 7 0

Fig. 6-3. The mg-tree of each node in the A cluster at the 1st round

Fig. 6-4. Example cluster A in an A-Level group with the 2nd round

AIT 2010

2010 International Conference on Advanced Information Technologies (AIT)

level 0 Root level 1 level 2

A1 Val(1)= 0 11 1

 12 0

 13 0

 14 0

 15 1

 16 0

 17 0

 Val(2)= 0 21 1

 22 0
 23 0

 24 0

 25 1

 26 0

 27 0

 Val(3)= 1 31 1

 32 1
 33 1
 34 0

 35 1

 36 1

 37 1

 Val(4)= 1 41 1

 42 1

 43 1
 44 0

 45 1

 46 0

 47 1

 Val(5)= 0 51 1

 52 0

 53 0

 54 0

 55 1

 56 0

 57 0

 Val(6)= 0 61 1

 62 0

 63 0

 64 0

 65 1

 66 0

 67 0

 Val(7)= 0 71 1

 72 0

 73 0

 74 0

 75 1

 76 0

 77 0

Fig. 6-5. The mg-tree of each node in the A cluster at the 2nd round

level 0 Root level 1 level 2

A1 Val(1)= 0

 12 0

 13 0

 14 0

 15 1

 16 0

 17 0

 Val(2)= 0 21 1

 23 0

 24 0

 25 1

 26 0

 27 0

 Val(3)= 1 31 1

 32 1

 34 0

 35 1

 36 1

 37 1

 Val(4)= 1 41 1

 42 1

 43 1

 45 1

 46 0

 47 1

 Val(5)= 0 51 1

 52 0

 53 0

 54 1

 56 0

 57 0

 Val(6)= 0 61 1

 62 0

 63 0

 64 0

 65 1

 67 0

 Val(7)= 0 71 1

 72 0

 73 0

 74 0

 75 1

 76 0

Fig. 6-6. The ic-tree of each node by the Decision Making Phase in A cluster

The ic-

tree

erased

the

vertices

with

repeated

names

from the

mg-tree.

AIT 2010

2010 International Conference on Advanced Information Technologies (AIT)

level 1 level 0 Root

VOTE(1) =(0,0,0,1,0,0)= 0 VOTE(A1) =0,0,1,1,0,0,0

VOTE(2) =(1,0,0,1,0,0)= 0

VOTE(3) =(1,1,0,1,1,1)= 1

VOTE(4) =(1,1,1,1,1,1)= 1

VOTE(5) =(1,0,0,0,0,0)= 0

VOTE(6) =(1,0,0,0,1,0)= 0

VOTE(7) =(1,0,0,0,1,0)= 0

Fig. 6-7. The consensus value by node B3

Fig. 7. The example for an A-Level group nodes

forward value to the B-Level group’s cluster

BⅡ-1 -B1 BⅡ-1 -B2 BⅡ-1 -B3 … BⅡ-1 -B8

A1 1 A1 1 A1 1 … A1 1

A2 1 A2 1 A2 1 … A2 1

A3 0 A3 0 A3 1 … A3 0

A4 1 A4 0 A4 0 … A4 0

A5 1 A5 1 A5 1 … A5 1

A6 0 A6 0 A6 0 … A6 0

A7 1 A7 1 A7 1 … A7 1

MAJ1=1 MAJ2=1 MAJ3=1 … MAJ8=1

Fig. 8. Each node of BⅡ-1 cluster receive

element of DECA from an A-Level group node

Fig. 9-1. Example of BⅡ-1 cluster in the B-Level group

B1 B2 B3 B4 B5 B6

1 1 1 1 1 1

Fig. 9-2. The initial value of each node

in BⅡ-1 cluster

 level 0

Root level 1

 level 0

Root level 1

 level 0

Root level 1

 level 0

Root level 1

 level 0

Root level 1
…………

Val(B1) 1 0 Val(B2) 1 0 Val(B3) 1 0 Val(B4) 1 0 Val(B5) 1 0 …………

=1 2 1 =1 2 1 =1 2 1 =1 2 1 =1 2 1 …………

 3 1 3 1 3 1 3 1 3 1 …………

 4 1 4 1 4 1 4 1 4 1 …………

 5 0 5 0 5 0 5 0 5 0 …………

 6 1 6 1 6 1 6 1 6 1 …………

Fig. 9-3. The mg-tree of each node in BⅡ-1 cluster at the 1st round

Fig. 9-4. Example cluster A in an A-Level group with the 2nd round

AIT 2010

2010 International Conference on Advanced Information Technologies (AIT)

level 0 Root level 1 level 2

B1 Val(1)= 0 11 1

 12 1

 13 0

 14 1

 15 1

 16 0

 Val(2)= 1 21 1

 22 1

 23 0

 24 1

 25 1

 26 0

 Val(3)= 1 31 1

 32 1

 33 0

 34 1

 35 1

 36 0

 Val(4)= 1 41 1

 42 1

 43 0

 44 1

 45 1

 46 0

 Val(5)= 0 51 1

 52 1

 53 0

 54 1

 55 1

 56 0

 Val(6)= 1 61 1

 62 1

 63 0

 64 1

 65 1

 66 0

Fig. 9-5. The mg-tree of node B1 at the 2nd round

level 0 Root level 1 level 2

B1 Val(1)= 0

 12 1

 13 0

 14 1

 15 1

 16 0

 Val(2)= 1 21 1

 22 1

 23 0

 24 1

 25 1

 26 0

 Val(3)= 1 31 1

 32 1

 33 0

 34 1

 35 1

 36 0

 Val(4)= 1 41 1

 42 1

 43 0

 45 1

 46 0

 Val(5)= 0 51 1

 52 1

 53 0

 54 1

 56 0

 Val(6)= 1 61 1

 62 1

 63 0

 64 1

 65 1

Fig. 9-6. The ic-tree of node B1 by the Decision

Making Phase

level 1 level 0 Root

VOTE(1) =(1,0,1,1,0)= 1 VOTE(B1)=(1,1,1,1,1,1)= 1

VOTE(2) =(1,0,1,1,0)= 1

VOTE(3) =(1,1,1,1,0)= 1

VOTE(4) =(1,1,0,1,0)= 1

VOTE(5) =(1,1,0,1,0)= 1

VOTE(6) =(1,1,0,1,1)= 1

Fig. 9-7. The consensus value by node B3

6.1 Correctness of PFC

To prove that vertex α is common, the term

common frontier [2] is defined as follows: When

every root-to-leaf path of the mg-tree contains a

common vertex, the collection of the common

vertices forms a common frontier. In addition, the

constraints, Agreement and Validity, can be

rewritten as:

� Agreement: Root i is common

� Validity: VOTE(i)=vi for each correct node, if

the node i is correct

Every correct node has the same values

collected in the common frontier if a common

frontier does exist in a correct node’s mg-tree.

Subsequently, using the same function VOTE to

compute the root value of the tree structure, every

correct node can compute the same root value

The ic-

tree

erased

the

vertices

with

repeated

names

from the

mg-tree.

AIT 2010

2010 International Conference on Advanced Information Technologies (AIT)

because the same input (the same collected

values in the common frontier) and the same

computing function will produce the same output

(the root value). Since PFC can solve the

agreement problem, the correctness of PFC

should be examined in the following two ways

[2].

(1) Correct vertex: Vertex αi of a tree is a

correct vertex if node i (the last node name in

vertex αi’s node name list) is correct. In other

words, a correct vertex is a place to store the

value received from a correct node.

(2) True value: For a correct vertex αi in the tree

of a correct node, val(αi) is the true value of

vertex αi if TMij is fault-free. In other words, a

correct vertex is a place to store the value

received from a correct node. In other words,

the stored value is called the true value of a

vertex if the value stored in such a vertex is

correct from the influence of a faulty

transmission media.

Lemma 1. The correct destination node can

detect the influence of the values through

disorderly faulty processes.
Proof: The message(s) send by disorderly faulty

processes can be detected if the

destination node to receive the source

node in some one round sends the same

values that are not following the initial

value passed.

Lemma 2. The correct nodes can receive

message from correct node, if the number of

cA and cBj and ITMBj is maximal.
Proof: A correct sender node broadcasts a

message to others and itself. In the worst

case, a correct node can receive cA-NfpA

and cBj-NfpBj and ITMBjc-NfpA messages

transmitted in each round of the message

exchange because the disorderly faulty

processes can be detected. If cA-

NfpA>2NfpA and cBj-NfpBj>NfpBj and

Bj
Σ ITMBj/2-1≥[ITMBjc≥(2NfpA+1)], a

correct node can determine messages

from sender nodes by taking the majority

value from the values received in each

message exchange round.

Theorem 1. A correct node can remove the

influences from disorderly faulty processes.

Proof: By Lemma 1 and Lemma 2, the theorem

is proved.

Theorem 2. Each node can receive the values

without influences of any disorderly faulty

processes between the sender node via PFC in

each round, then nA>>>>2NfpA+1 in an A-Level

group and nBj>>>> numC

j 1max = 2NfpBj+1 in the cluster j

of a B-Level group.

Proof: The influences of disorderly faulty

processes between any pairs of nodes can

be ignored in each round of message

exchange and nA>2NfpA+1 in an A-Level

group; and nBj>2NfpBj+1 in the cluster j of

a B-Level group. The reason is that the

correct sender nodes nA (nBj) copies of

message to all destination nodes. In the

worst case, a correct destination node

receives nA-NfpA messages transmitted via

the correct sender node in an A-Level

group; and receives nBj-NfpBj messages

transmitted via the correct sender node in

the cluster j of a B-Level group.

Theorem 3. The correct node can detect the

disorderly faulty processes in the network.

Proof: In the proposed protocol PFC, there are

two rounds of message exchange in

Implementation Process, where Nfp≥((n-

1)/3) and n>3, so there are two rounds of

message exchange in the Message

Exchange Phase. Each correct node

receives the message from the source

node in the first round of message

exchange and receives other nodes

messages in the second round of message

exchange. In terms of the Lemma 1, each

correct node can detect the disorderly

faulty processes in the cloud computing

environment.

Lemma 3. In an ic-tree, all correct vertices are

common.
Proof: The tree structure has conversed from

mg-tree to ic-tree. At the level σ or upon

of ic-tree, the correct vertex i has at least

2σ-1 children, in which at least σ children

are correct. The real value of these σ

correct vertices is common, and the

majority value of vertex α is common.

For this reason, all correct vertices of the

ic-tree are common.

Lemma 4. The common frontier exists in the

ic-tree.
Proof: There are σ vertices along each root-to-

leaf path of an ic-tree, so that though most

σ-1 nodes have failed, at least one vertex

is correct along each root-to-leaf path of

the ic-tree. The correct vertex is common,

and the common frontier exists in each

correct node ic-tree by Lemma 1.

AIT 2010

2010 International Conference on Advanced Information Technologies (AIT)

Lemma 5. Let α be a vertex, and α is common

if there is a common frontier in the sub-tree

rooted at i.
Proof: When the height of α is 0, and the

common frontier exists, α is common. If

the height of α is σ, the children of α are

all in common by induction hypothesis

with the height of the children at σ-1.

Then the vertex α is common.

Corollary. If the common frontier exists in the

ic-tree, then the root is common.

Theorem 4. The root of a correct node’s ic-tree

is common.
Proof: By Lemmas 1, 2 and the Corollary, the

theorem is proved.

Theorem 5. The proposed protocol PFC solves

the agreement problem in a cloud computing

environment.
Proof: Inasmuch as the theorem must be

described that PFC meets the constraints

Agreement’ and Validity’.

Agreement’: Root i is common, and by

Theorem 3, Agreement’ is satisfied.

Validity’: VOTE(i)=vi for each correct

node, if the initial value of the node i is vi.

Whereas all nodes are correct, the nodes

use PFC to communicate with all others.

The message of correct vertices for all

correct nodes’ mg-trees is vi. When the

tree structure has converted from mg-tree

to ic-tree, the correct vertices still exist.

Therefore, every correct vertex of the ic-

tree is common (refer to Lemma 4), and

its true value is vi. This root is common

by Theorem 4. The computed value

VOTE(i)=vi is stored in the root of the ic-

tree for all correct nodes. (Validity’) is

satisfied.

6.2. Complexity of PFC

The complexity of PFC is evaluated in terms

of: 1) the maximum number of allowable

disorderly faulty processes; and 2) the minimum

number of rounds to exchange messages.

Theorems 6 and 7 show that the optimal solution

is reached.

Theorem 6. The number of allowable

disorderly faulty processes is Tf.
Proof: According to the past literatures of the

agreement problem, the influence of

disorderly faulty processes is simular as

faulty transmission media; hence, the

constraint of the maximum number of

allowable faulty (n>2Nfp+1) can be

applied to our study.

In a cloud computing environment, PFC

can tolerate tfA (≥2NfpA+1) disorderly

faulty processes in an A-Level group and

the fault tolerant capability of a B-Level

group is tfB (≥ numC

j 1max = 2NfpBj+1). The total

number of allowable disorderly faulty

processes by PFC is Tf (≥(2NfpA+1)+
numC

j 1max = (2NfpA+1)), and the number of

disorderly faulty processes is maximal in

the cloud computing environment.

Theorem 7. PFC requires σ rounds of message

exchange to solve the agreement in a cloud

computing environment and σ is minimum

number of rounds.
Proof: The message passing is required only in

the Message Exchange Phase; two rounds

are used to send the sufficient messages

to achieve agreement in an n-nodes

distributed system [15]. In a cloud

computing environment, each node needs

to exchange messages with other nodes.

Therefore, the constraint of the minimum

number with two rounds can be applied to

the study. However, in a cloud computing

environment, two rounds of exchange

messages in the A and B-level group are

required. In addition, each node in the

same cluster of a B-Level group needs to

receive messages from an A-Level

group’s nodes; therefore, one round is

required. In conclusion, the minimum

number rounds to exchange message

required is optimal.

As a result, PFC requires a minimal number of

rounds and tolerates a maximal number of

disorderly faulty processes to reach a common

agreement with all correct nodes. The optimality

of the protocol is proven.

7. CONCLUSIONS

Cloud computing is a new concept of

distributed systems [1,3,9,11,14,21]. It has

greatly encouraged distributed system design and

practice to support user-oriented services with

application [3,9,14,21]. In the Internet platform

of cloud computing where each node needs to

complete the user’s requests synchronously and

to reach the common agreement as specific

service. Fault-tolerance is an important research

topic in the study of distributed systems and it is

AIT 2010

2010 International Conference on Advanced Information Technologies (AIT)

a fundamental problem in distributed systems;

there are many relative literatures in the past

[2,5,6,7,8,10,12,13,15]. According to previous

studies, network topology plays an important role

in the agreement problem, but the results cannot

cope with a cloud computing environment with

fallible processes and the agreement problem

thus needs to be reinvestigated. Moreover, in this

paper, the agreement problem with disorderly

faulty processes in a cloud computing has been

solved by the proposed protocol.

The proposed protocol, Processes Failure of

Cloud computing (PFC in short), ensures that all

correct nodes in the cloud computing

environment can reach a common value.

Moreover, the new protocol PFC is adapted to the

cloud computing environment and the solution of

PFC is applied to a cloud computing environment

with fallible processes. Nevertheless, the

interactive consistency problem in an A-Level

group and the consensus problem in a B-Level

group have been solved. PFC can derive the

bound of allowable disorderly faulty processes.

PFC uses the minimum number of rounds of

message exchange and tolerates the maximum

number of allowable disorderly faulty processes

in a cloud computing environment. Furthermore,

the fault-tolerance capacity is enhanced by PFC.

Merely considering faulty nodes in the

agreement problem is insufficient for the highly

reliable distributed system of a cloud computing

environment. A related closely problem called the

Fault Diagnosis Agreement (FDA) problem. The

objective of solving the FDA problem is to make

each correct node can detects or locates the

common set of disorderly faulty processes in the

distributed system. Therefore, solving the FDA

problem for the highly reliable distributed system

underlying a cloud computing environment is

included in our future work. In order to improve

the efficiency and decrease the number of rounds

in message exchange, the problem of reaching

Eventual Byzantine Agreement (EBA) needs to

be considered. Many rounds takes for a protocol

to reach a decision that depends in general

pattern of failure.

ACKNOWLEDGMENT

This work was supported in part by the Taiwan

National Science Council under Grants NSC96-

2221-E-324-021 and NSC97-2221-E-324–007 -

MY3.

REFERENCE

[1] F.M. Aymerich, G. Fenu and S. Surcis, “An

Approach to a Cloud Computing

Network,” the First International

Conference on the Applications of Digital

Information and Web Technologies, pp.

113-118, August 2008.

[2] M. Fischer and N. Lynch, “A Lower Bound

for the Assure Interactive Consistency,”

Information Processing Letters, Vol. 14,

No.4, pp. 183-186, 1982.

[3] R.L. Grossman, Y. Gu, M. Sabala and W.

Zhang, “Compute and Storage Clouds

Using Wide Area High Performance

Networks,” Future Generation Computer

Systems, Vol. 25, No. 2, pp. 179-183,

February 2009.

[4] F. Halsall, Data Links, Computer Networks

and Open Systems. 4th ed., Addison-

Wesley Publishers, pp. 112-125, 1995.

[5] L. Lamport, et al., “The Byzantine General

Problem,” ACM Transactions on

Programming Language and Systems, Vol.

4, No. 3, pp. 382-401, July 1982.

[6] F.J. Meyer and D.K. Pardhan, “Consensus

with Dual Failure Modes,” IEEE

Transactions on Parallel and Distributed

System, Vol. 2, No. 2, pp. 214-222, 1991.

[7] M. Pease, R. Shostak, and L. Lamport,

“Reaching Agreement in Presence of

Faults,” Journal of ACM, Vol. 27, No. 2,

pp. 228-234, April 1980.

[8] H.S. Siu, Y.H. Chin and W.P. Yang, “A

Note on Consensus on Dual Failure

Modes,” IEEE Transactions on Parallel

and Distributed Systems, Vol. 7, No. 3, pp.

225-230, 1996.

[9] M.A. Vouk, “Cloud Computing- Issues,

Research and Implementations,”

Information Technology Interfaces, pp.

31-40, June 2008.

[10] S.C. Wang, Y.H. Chin, K.Q. Yan and C.

Chen, “Achieving Byzantine Agreement

in a Generalized Network Model,”

CompEuro ‘89, Vol. 4, pp. 139-145, 1989.

[11] L.H. Wang, J. Tao and M. Kunze,

“Scientific Cloud Computing: Early

Definition and Experience,” the 10th

IEEE International Conference on High

Performance Computing and

Communications, pp. 825-830, 2008.

[12] S.C. Wang and K.Q Yan, “Revisit

Consensus Problem on Dual Link Failure

Modes,” the International Computer

AIT 2010

2010 International Conference on Advanced Information Technologies (AIT)

Software & Applications Conference, pp.

84-89, August 1998.

[13] S.C. Wang, K.Q. Yan, S.S. Wang and G.Y.

Zheng, “Reaching Agreement Among

Virtual Subnets in Hybrid Failure Mode,”

IEEE Transactions on Parallel and

Distributed Systems, Vol. 19, No. 9, pp.

1252-1262, September 2008.

[14] A. Weiss, “Computing in The Clouds,”

netWorker, Vol. 11, No. 4, pp. 16-25, 2007.

[15] K.Q. Yan, Y.H. Chin and S.C. Wang,

“Optimal agreement protocol in malicious

faulty processors and faulty links,” IEEE

Transactions on Knowledge and Data

Engineering, Vol. 4, No. 3, pp. 266-280,

June 1992.

[16] “Amazon.com: Online Shopping for

Electronics, Apparel, Computers, Books,

DVDs & more,” http://www.amazon.com/,

January 2010.

[17] “Application Delivery Networking,

Application Acceleration, Internet Traffic

Management System: Zeus.com,”

http://www.zeus.com/, January 2010.

[18] “Application Traffic Management,

Application Security,”

http://www.zeus.com/products/traffic

-manager/index.html, January 2010.

[19] “Cloud Computing,” http://www.zeus.com/

cloud_computing/, January 2010.

[20] “Load Balancing, Load Balancer,”

http://www.zeus.com/products/zxtmlb/ind

ex.html, January 2010.

[21] “More Google Product,”

http://www.google.

com/options/, January 2010.

[22] “What is Cloud Computing?,” http://www.

zeus.com/cloud_computing/cloud.html,

January 2010.

[23] “ZXTM for Cloud Hosting Providers,”

http://www.zeus.com/cloud_computing/fo

r_cloud_providers.html, January 2010.

