
Hierarchical Tree Construction Based on

Learning from Classification Results

JuiHsi Fu SingLing Lee

Department of Computer Science and Information Engineering

National Chung Cheng University

168 University Road, Minhsiung Township,

62162 Chiayi, Taiwan, R. O. C.

{fjh95p, singling}@cs.ccu.edu.tw

Abstract—Based on the hierarchical taxonomy, a large

multi-class classification problem is divided into multiple

sub-problems, and the accuracy and efficiency of classi-

fication performance could be significantly improved. It

is observed that, classification results of validation data

could be used for adjusting class nodes in the hierarchical

tree, not only for measuring the quality of a hierarchy. If

two classes in which documents are frequently misclassi-

fied to each are merge, the classification to distinguish

between them could be performed more precisely in

this new branch. Also, the number of common features

of documents between two classes is measured for the

similarity of these two classes, and the size of positive

training data is concerned for avoiding the overfitting

problem in classification. Hence, in this paper, classifica-

tion results and the number of feature sets and training

sets are used for constructing a hierarchical taxonomy.

Moreover, three merge-prohibiting conditions are defined

for guaranteeing that (1) training sets are consistent with

classification models and (2) the overfitting problem is

avoided. In our experiments on real-world datasets, it

is presented that hierarchical classification accuracy is

improved by the proposed method, especially when the

classes with few documents are ignored.

Index Terms—Hierarchical Taxonomy Construction,

Hierarchical Classification, Document Classification

This work is supported by NSC, Taiwan, R.O.C. under grant no.

NSC 97-2221-E-194-029-MY2.

1. INTRODUCTION

With convenience the Internet brings, a large number

of information is easily and frequently published for

business or entertainments, such as e-mail, web pages,

news, official documents, blogs, etc. However, it be-

comes a difficult problem in the real world that how

to categorize and manage all kinds of electronic text

document efficiently. This need motivates experts from

varies fields, like linguists, statisticians, and computer

scientists to focus on the filed of document classifica-

tion.

Multi-class document classification is a complicated

problem in which there are multiple class labels and

each document is labeled by one of them. Also, it is

worth noticing that real-world datasets, like News, the

catalog of Library, and Wikipedia [1] are all in hier-

archical structures. Generally, hierarchical taxonomies

are much more intuitive and comprehensible than the

flat one. Because the subjects with semantically sim-

ilar topics are grouped into a category, hierarchical

taxonomies could bring convenience for management

and categorization potentially. Hence, hierarchical tax-

onomies are useful tools for multi-class document

classification. They could partition a large classification

problem into multiple sub-problems to improve the

performance of efficiency and accuracy [2], [3], [4],

[5]. However, in previous research results, almost all

hierarchical taxonomies for different kinds of docu-

ments are manually generated. It is inefficient and

expensive to define a hierarchical taxonomy by hand

in an information system which might need to process

millions of documents. Thus, efficient algorithms are

needed to be designed for automatically constructing

hierarchical taxonomies.

Recently, clustering approaches [6], [7] are fre-

quently used for hierarchical taxonomy constructions.

Clustering is a method of unsupervised learning and

a common technique for statistical data analysis. Ini-

tially, each class is treated as a cluster. Then, similar

clusters are merged, and the hierarchy is generated by

the structure of merged clusters. However, clustering

algorithms are usually limited to the predefined pa-

rameters, like the number of clusters or the depth of

the child nodes. That is not practical for hierarchical

taxonomy construction in real-world applications. In

[8], authors use classification performance to adjust the

class hierarchy than predefining parameters. At first,

the classification of validation data is performed on the

predefined hierarchy. Then, location of nodes with bad

performance are adjusted, and classification of valida-

tion data is performed on the new class hierarchy. This

iteration continues until no performance improvement

is made by any adjusting.

In this paper, in addition to utilizing performance

(accuracy/precision) of the validation data, classifica-

tion results are also measured for constructing class

hierarchy. According to the classification results, it is

observed that some documents belonging to a class

are frequently misclassified to another class label. If

these two classes are merged, the difference among

documents belonging to them could be distinguished

more clear in this new branch than that in the previ-

ous hierarchy. It is also noticed that, the number of

common features of documents between two classes

is measured for the similarity of these two classes,

and the size of positive training data is concerned

for avoiding the overfitting problem in classification.

Hence, a method that utilizes classification results and

the number of feature sets and training sets for con-

structing a hierarchical taxonomy is proposed. More-

over, three merge-prohibiting conditions are defined for

guaranteeing that (1) training sets are consistent with

classification models and (2) the overfitting problem is

avoided. In our experiments, three real-world data sets,

ModApte, 20NewsGroups, and Edoc are used for

evaluating classification performance of our method.

Also, Support Vector Machines (SVM), proposed by

Cortes and Vapnik in 1995 [9], is used as our clas-

sification program. Experimental results present the

classification accuracy of the predefined hierarchical

tree and our method. It is summarized that, although

our method does not work well on the dataset in which

the distribution of documents in each class is balanced,

hierarchical classification accuracy on other datasets is

improved by the proposed method, especially when the

classes with few documents are ignored.

The rest of the paper is organized as follows: recent

research results on hierarchical taxonomy construction

are introduced in Section 2. In Section 3, we propose a

method to construct a hierarchical taxonomy. Section 4

reports the experimental results on real-world data sets

and the performance of the purposed method. Finally,

the conclusion is given in Section 5.

2. RELATED WORKS

In this section, hierarchical classification, Support

Vector Machine (SVM), and hierarchical taxonomy

construction are detailed introduced.

2.1 Hierarchical Classification

A semantically hierarchical taxonomy is similar to

the real-world data for classification. For example, in

the library, the mathematics and physics belong to the

science which is a more general topic. Thus, the math-

ematics and physics are subclasses of the science,and

they are two branches of the science in the hierarchy.

For classification, internal nodes of the hierarchy are

classifiers and leaf nodes are class labels. An example

of hierarchical classification is illustrated in Fig. 1.

A document is labeled by using these classifiers at

internal nodes and is assigned to their branches until

the leaf node is reached. Efficiency is the advantage

of hierarchical classification, especially with a large

hierarchical taxonomy. When a sample is classified to

a branch of the tree, it means that other classifiers,

not at this branch, need not be performed. In other

words, a large multi-class classification problem could

be divided into multiple sub-problems. Indeed, that

improves the efficient of classification performance.

There are many different kinds of classifiers em-

ployed in the hierarchical tree, like Support Vector

Machine [2], [4], naı̈ve Bayes classifier [3], and As-

sociation Rules [10]. In [2], the value obtained from

the SVM classifier is regarded as the probability of

classification. Thus, the probability for each path can

be calculated by multiplying the probability at nodes

in each path from the root to the leaf node. Then,

the path with the highest probability is selected as the

classification path, and the sample is labeled as the

class at the leaf node in this path.

Internal node

Leaf node

root node

Classified

data

New data

Fig. 1. Hierarchical Classification

2.2 Support Vector Machine (SVM)

The Support Vector Machine is a statistical classifi-

cation theory purposed by Cortes and Vapnik in 1995

[9]. Its objective function is to find a hyperplane to

separate instances with the positive label from ones

with the negative label. The optimal hyperplane is

decided by maximizing the distance from the near-

est training instances to the hyperplane. Basically,

SVM is designed for the binary-class classification

problems. For the extended multi-class classification

problems, One-Against-All (OAA), One-Against-One

(OAO), and Error Correcting Output Code (ECOC)[7],

have also been discussed in recent years. However, the

hierarchical taxonomy construction is our focus in this

paper, so the efficiency of SVM multi-class classifi-

cation is not discussed further. To take OAA as an

example, c binary SVM classifiers are trained where c

is the number of the classes. SVM classifier i is trained

by using all samples in class i as positive samples, and

the rest of the samples as negative samples. After these

c SVM classifiers are trained, c corresponding decision

boundaries are generated. When an unlabeled sample

comes, its predicted label is one with the highest

decision value.

In SVM training, all training data is set up first.

For example, in Fig. 2, there are eight documents

in training set where {a1, a2, a3} belong to class A,

{b1, b2} belong to class B, and {c1, c2, c3} belong to

class C. For SVM classifier A, it sets {a1, a2, a3}
as positive samples and {b1, b2, c1, c2, c3} as negative

samples. For SVM classifier B, it sets {b1, b2} as

positive samples and {a1, a2, a3, c1, c2, c3} as negative

samples. For SVM classifier C, it sets {c1, c2, c3} as

positive samples and {a1, a2, a3, b1, b2} as negative

samples. Then SVM classifiers A, B, and C are trained

and used for classifying unlabeled documents.

In the flat class hierarchy, each class is a leaf

node. Undoubtedly, each node is a SVM classifier for

hierarchical models. When a hierarchical taxonomy is

a1 a2 a3 b1 b2 c1 c2 c3

SVM A

a1 a2

a3

b1 b2

c1 c2

c3

SVM B

b1 b2

c1

c2 c3

a1 a2

a3

SVM C

b1

b2

a1 a2

a3

c1 c2

c3

Training Set :

Positive Positive PositiveNegative Negative Negative

Fig. 2. Train SVM classifiers

provided, the OAA multi-class classification should be

performed with some changes. For a SVM classifier

at each node, samples in its descendants are set as

positive samples, and those in the descendants of its

sibling nodes are set as negative ones. In Fig. 3, a

hierarchical taxonomy is given based on the example

in Fig. 2. For SVM classifier A, its training sets

are not changed because it has no descendant and

descendants of its sibling node X are class B and

C. For SVM classifier X , it is an internal node and

it sets {b1, b2, c1, c2, c3} which are the samples in the

descendant classes as positive samples and {a1, a2}
as negative samples. For SVM classifier B, it sets

{b1, b2} as positive samples and {c1, c2, c3} as negative

samples. For SVM classifier C, it sets {c1, c2, c3}
as positive samples and {b1, b2} as negative samples.

After all SVM classifiers are trained, an unlabeled

sample is classified according to the path which is

formed by the nodes with the highest decision value

in the classification at each level of the hierarchical

taxonomy.

SVM X

a1 a2

a3

b1 b2

c1 c2

c3

SVM B

b1 b2

SVM C

c1 c2

c3

Positive Positive PositiveNegative Negative Negative

B

XA

C

c1 c2

c3

b1 b2

(a) (b)

Fig. 3. Train SVM classifiers of hierarchical models. (a) A

hierarchical taxonomy. (b) Train SVM classifiers.

2.3 HIERARCHICAL TAXONOMY CONSTRUCTION

For convenience, a suitable hierarchical taxonomy

should be automatically built by algorithms. Recently,

clustering methods are frequently applied for this

need. Hierarchical clustering constructs a hierarchy

of clusters presented as a tree. Generally, there are

two different methods for constructing a hierarchical

tree. The first method is the hierarchical agglomera-

tive clustering (HAC) approach, in Fig. 4, which is

basically a bottom-up approach from the leaves. It

builds the hierarchy by merging individual clusters.

Then, the closest elements are merged according to

the distance (similarity) between the elements [11],

[12]. The second method is the partitioning clustering

approach which is a top-down approach from the root

and recursively splits the clusters, in Fig. 5. First,

all elements are put into the largest cluster. Then, it

builds the hierarchy by splitting each cluster into sub-

clusters until it reaches the stop criteria or the clusters

are singletons. [7] starts from selecting two centroids

of the two furthest clusters as initial means and then

implements the k-means algorithm [6] with k = 2

to partition each cluster into 2 sub-clusters. In [13],

authors propose a partition algorithm to split each node

into at most n sub-node by minimizing the distance

function. Jensen−Shannon(JS) divergence [14] is

a popular method of measuring the distance (similarity)

between two probability distributions, and is used

to compute the distance between clusters. However,

clustering are usually limited to the predefined param-

eters, like the number of clusters or the depth of the

child nodes. They could not be applied for practical

applications.

In [8], authors design an algorithm to adjust the pre-

defined hierarchy. Given a predefined hierarchy, train-

ing data, and validation data, the algorithm generates

candidate hierarchies by making only one change on

the previous hierarchy. After evaluating classification

on these hierarchies with validation data, the hierarchy

a edcb

bcde

debc

abcde

a

b

c

d

e

Fig. 4. Hierarchical Agglomerative Clustering

a edcb

bcde

de

abcde

a

b

c

d

e

bc

Fig. 5. Hierarchical Partitioning Clustering

with the best improvement is picked. The adjusting

hierarchy procedure stops until there is no improve-

ment. However, time is spent on finding the hierarchy

according to the performance of validation data. In

this paper, in addition to utilizing performance (ac-

curacy/precision) of the validation data, classification

results are measured for constructing class hierarchy.

3 HIERARCHY CONSTRUCTION BASED ON

LEARNING FROM CLASSIFICATION RESULTS

In this section, a method of automatically con-

structing a hierarchical taxonomy based on learning

from classification results is proposed. The hierarchical

taxonomy is adjusted by merging the classes of which

samples are frequently misclassified as each other. We

start from the flat model while all leaves are children of

the root, and the procedure of our method is described

in Fig. 6. Given a hierarchy H , training data T , and

validation data V , the procedure is as follow:

1) Train the hierarchical model on T .

2) Evaluate the hierarchical model on V .

3) Adjust the hierarchy H .

4) Repeat Step 1 until no adjustment is made.

The main part of the approach is in Step 3, hierarchy

adjustment. The evaluated results are measured to

decide which classes should be merged. The measure-

ment in our approach is based on the following ob-

servation: biases between classes, feature distribution,

and training data size.

Flat model
Adjust

hierarchy

Evaluate

hierarchy

New

Taxonomy

Fig. 6. The Approach for Adjusting Hierarchy

3.1 BIASES BETWEEN CLASSES

If most of documents in class C1 are misclassified

to class C2 and most of documents in class C2 are

misclassified to class C1, class C1 and C2 should be

merged in order to distinguish documents in them in

the new branch more clearly. Thus, the biases between

classes are defined as

Bias(Ci → Cj) =
n

Ori Mis(Ci)
× n

Cla Mis(Cj)

where n is the number of documents in class Ci

misclassified to class Cj , Ori Mis(Ci) is the num-

ber of misclassified documents in class Ci, and

Cla Mis(Cj) is the number of documents which are

misclassified to class Cj . The first fraction is the

ratio of documents misclassified to Cj in misclassified

documents that actually belong to class Ci. The second

fraction is the ratio of documents misclassified to Cj

in documents misclassified to class Cj .

An example is illustrated in Tab. I where class

labels in the column are true label and in the row

are predicted labels. The value in the table is the

number of documents that belong to a class (column)

misclassified to another class (row). There are three

class A, B, and C. The bias from class A to B is:

TABLE I

AN EXAMPLE OF BIAS BETWEEN CLASSES.

A B C Ori Mis

A 50 40 5 45

B 20 100 10 30

C 10 10 80 20

Cla Mis 30 50 15

Bias(CA → CB) = 40
45 × 40

50 = 0.711. On the other

hand, the bias from class B to A is: Bias(CB →
CA) = 20

30 × 20
30 = 0.444. As we know, the biases

between class A and B is not symmetric. For the

symmetric biases between classes, the Score value

calculated by the biases between class Ci and Cj is

defined as:

Score(Ci, Cj) = Bias(Ci → Cj)×Bias(Cj → Ci)

3.2 FEATURE DISTRIBUTION

When there are many common features in two

classes, it is difficult to distinguish documents between

these two class labels. Thus, these two classes should

be merged, such that the difference between these

classes can be distinguished more clearly in this new

branch. The ratio of common features is defined as:

FRatio(Ci, Cj) =
∑

i fi × wi × comm(fi, Ci, Cj)∑
i fi × wi

, where wi is the weight of feature fi and

comm(fi, Ci, Cj) is 1 if fi appears in both class Ci

and Cj , otherwise, 0.

3.3 TRAINING DATA SIZE

When there are two classes and 90% training sets

belong one of them, classification may be over-fitted

with this dominant class. That is because features are

significantly weighted if they belong to the dominant

class. Thus, in order to avoid the problem of overfitting,

the ratio of sizes of positive training data is defined as:

TSRatio(Ci, Cj) =
min PTrainingSize(Ci, Cj)
maxPTrainingSize(Ci, Cj)

3.4 MERGING CLASSES WITH TENDENCIES

(MCT)

According to the above factors, a score function

is defined for measuring the needs of merging class

nodes:

A Score(Ci, Cj) = (1 + Score(Ci, Cj))

×FRatio(Ci, Cj)× TSRatio(Ci, Cj)2

, TSRatio(Ci, Cj)2 means that we want to merge

the classes with almost equal training data size.

Moreover, it is worth noticing that any two classes

should not be merged if one of the following three

merge-prohibiting conditions occurred in the hierarchi-

cal tree: (A) Two-Children: these two class nodes

chosen to be merged have no sibling node. It is

not necessary to perform the merging on them. (B)

Different-Training-Set: the training samples in

these two classes are changed when previous merging

operations are performed. When the training samples

are changed, they are not consistent with the classi-

fiers and classification results. Hence, they can not be

merged in the current hierarchy. For example, in Fig. 7,

class C and D are chosen to be merged. When moving

the position of class D to be the sibling of class C,

the positive and negative training samples in class X

and B are changed. So the class X , B, C, and D can

not be merged in adjusted hierarchy in which Class C

and D are already merged. (C) Oversize: that is used

to prohibit the internal node from having too many

positive training samples. If it occurs, the problem

of overfitting might be caused. The rule is regarded

as a threshold to prohibit the growth of subtrees. If

the number of positive samples of the internal node

is larger than the threshold after its descendant class

nodes are merged, the merging is not performed.

In Fig. 8, the number above the nodes is the number

of positive samples in each node class. Assume that

class C and D are chosen to be merged. If they are

merged by moving the position of class D to be the

A

CB

X D A

CB

X

D

Fig. 7. Example for Rule B.

sibling of class C, the positive samples of class X

which is the ancestor of class C will increase. If X

has too many positive training samples, there will be

a high probability to classify the document to class

X , not A. In order to avoid this overfitting problem,

Rule C: Oversize, that is set as the number of positive

samples in class A, is used to prohibit the internal class

nodes from having too many positive samples.

A

CB

X D A

CB

X

D

15 15

86

1214

6 8 12

26 > 15

Fig. 8. Example for Rule C.

Therefore, the proposed Merging Classes with Ten-

dencies (MCT), the adjusting procedure for the hier-

archy on each round, is introduced step by step in the

following.

Step 1. Classification results are evaluated on the

current hierarchical taxonomy.

Step 2. Assume that A Score(Cm, Cx) is the

highest A Score value of class Cm, and if the

A Score(Cm, Cx) is also the highest A Score value

of class Cx, it means that documents in class Cm and

Cx are frequently misclassified to each other. Thus,

Cm and Cx are chosen to be merged.

Step 3. Two cases are considered that class Cm

and Cx are at the same level in the hierarchy or not.

Class Cm and Cx which are at the same level can be

merged immediately. Or, if the class node with higher

accuracy is at level 1 in the hierarchy, class Cm and

Cx are merged immediately. Otherwise, the position of

the class node with lower accuracy is changed to be

the sibling node of the other one.

Step 4. Three merge-prohibiting conditions are used

to check that the classes could be merged or not. If one

of three merge-prohibiting conditions is broken, merg-

ing operation on these two class nodes is cancelled.

Step 5. Go back to the Step 2 to find out the classes

with the second highest A Score value. If there is

no class to be merged at this round, going to Step 1

to evaluate classification results on the new hierarchy.

Our adjusting procedure stops until there is no need to

merge class nodes.

4. EXPERIMENTS

4.1 PERFORMANCE TESTING

TABLE II

THE CONTINGENCY TABLE FOR CLASS Ci

Class Actual Actual

Ci Pos. Neg.

Predict Pos. TPi FPi

Predict Neg. FNi TNi

The standard precision, recall, and F1 measure are

used for evaluating the performance of our proposed

method. Given the contingency table for class Ci (Tab.

II), the precision(Pi), recall(Ri), and F1 measure(F1i)

of class Ci are evaluated as:

Pi =
TPi

TPi + FPi
, Ri =

TPi

TPi + FNi
,

F1i =
2× Pi ×Ri

(Pi + Ri)

There are two ways to aggregate classification ac-

curacy over all classes. One is to average the

precision, recall, and F1 measure of each class,

called macroaveraging. The other is calculated

from the global contingency table (Tab. III), called

microaveraging. macroaveraing is significantly af-

fected by the performance of classes with few docu-

ments, and microaveraging is significantly affected

by the performance of dominant classes.

TABLE III

THE GLOBAL CONTINGENCY TABLE

Class set Actual Actual

C = C1, C2, ..., Cn Pos. Neg.

Predict Pos.
∑n

i=1 TPi
∑n

i=1 FPi

Predict Neg.
∑n

i=1 FNi
∑n

i=1 TNi

4.2 DATA SET

Three kinds of data sets, ModApte,

20NewsGroups [16], and Edoc are used in our

experiments, and each document belongs to only

one class. The first data set, ModApte, is the split

of Reuters-21578 collection [15], in which there

are 90 classes and 13,331 documents. The second

data set, 20NewsGroups, has 20 classes and 9,414

documents. The third data set, Edoc, is collected by

Chinese official documents in National Chung Cheng

University. Edoc has 81 classes and 5,342 documents.

In the environment of our experiments, each data

set is partitioned into 70 percent for training and 30

percent for validating. The training data sizes in each

class can be regarded as a normal distribution. The

standard deviations of training data sizes of each data

set are shown in Tab. IV.

TABLE IV

THE DETAILS OF DATA SETS

Data Set Classes Train Validate Deviation

ModApte 90 9586 3745 351.97

ModApteTop10 10 7194 2788 842.07

20NewsGroups 20 6589 2825 36.36

Edoc 81 3738 1604 114.14

4.3 EXPERIMENTAL RESULTS

The term weighting method used for weighting

features is TF-IDF (Term Frequency-Inverse Document

Frequency) [17], and SV M light[18] is our program of

classification. Our method starts from the flat hierarchy

and adjusts it based on learning from the classification

results at each round, named MCT in the following

charts. Also, we terminate the classification paths on

the first-level class nodes, named MCT − Lv1, in

order to emphasize on the classification performance

in adjusted hierarchical taxonomies and ignore the

problem of ambiguous class boundary. The predefined

hierarchical taxonomy which is defined artificially by

the experts is given to be compared with our methods,

named Pred in charts of experimental results.

Figure 9 and 10 are the macroaveraging and mi-

croaveraging accuracy on ModApte. It is reported that

the accuracy of MCT−Lv1 increases since the classes

in which documents are frequently misclassified to

each other are merged. It is also presented that are

only 1% and 1.6% improvement made by our method

on macroaveraging and microaveraging accuracy at

round 3. In this case, only top 10 dominant classes

in ModApte are used, ModApteTop10 (9,982 docu-

ments). Figure 11 and 12 show that classification accu-

racy is improved 9% and 1.8% by our method. Classes

with few documents are ignored, so the macroaverag-

ing accuracy is significantly improved.

����������������������
� � � � � � � 	
 ���
��� �����

��� ����� ��� ���� !" #$% #$%&'()
Fig. 9. Macroaveraging accuracy on ModApte

According to the numerical analysis on datasets in

Tab. IV, the size of training data in each class on

20NewsGroups is more balanced than other data

sets. There will be no adjustment in the hierarchy

because of Rule C that constraints the size of positive

training sets. Thus, Rule C is ignored for testing

its rationality and allowing our method to adjust the

hierarchy on 20NewsGroups. Figure 13 and 14 are

the macroaveraging and microaveraging accuracy on

��������������������������������������
� � 	 � � � � �
 ���
��� �����

�������������� ! "#$ "#$%&'(
Fig. 10. Microaveraging accuracy on ModApte

������������������������
� � � 	
 ���
��� �����

��������������� !"# !"#$%&'
Fig. 11. Macroaveraging accuracy on ModApteTop10

20NewsGroups. It is shown that classification ac-

curacy of our method decreases from the beginning.

The reason is that the overfitting problem decreases

the accuracy performed on the adjusted hierarchical

taxonomies. Therefore, Rule C is reasonably defined

and our method doesn’t work well on the balanced

datasets.

Figure 15 and 16 are the macroaveraging and mi-

croaveraging accuracy on Edoc. It is reported that our

method improves on macroaveraging accuracy before

Round 7. During Round 7 to 10, the macroaveraging

accuracy of our method decreases while the microav-

eraging accuracy of MCT−Lv1 increases. That is be-

cause two similar sizes of training data of class nodes

are merged, and Rule C is almost broken. Therefore,

the macroaveraging accuracy decreases because the

problem of overfitting occurs. Since macroaveraging

accuracy is significantly affected by the performance

�������������������������������
� � � �	

��

� �����

��������������� !"# !"#$%&'
Fig. 12. Microaveraging accuracy on ModApteTop10

��������������������������������
� � 	 �
 ���
��� �����

��������������� !"
 #$% #$%&'()

Fig. 13. Macroaveraging accuracy on 20NewsGroups

of classes with few documents, we choose the top 50

and 25 dominant classes in Edoc, EdocTop50 and

EdocTop25, for experiments. Figure 17, 18, 19, and 20

show that the decreasing in macroaveraging accuracy

is becoming smaller. However, the experimental results

show that there are only little improvement made by

our method on Edoc. Edoc is a collection of Chinese

official documents which are composed of Chinese

characters and short contents. On Edoc, the num-

ber of features is 8,141 and each document contains

26.55 features in average. Compared to Edoc, on

ModApte, the number of features is 55,784 and each

document contains 53.28 features in average. Because

short document contents usually contain insufficient

information, the classification on Edoc can not be

performed precisely with only few distinct features.

Also, there are few common features in the merged

class nodes. Hence, it is difficult to classify documents

�������������������������������
� � � 	
 ���
��� �����

��������������� !" #$% #$%&'()
Fig. 14. Microaveraging accuracy on 20NewsGroups

on Edoc correctly at the leaf class nodes because of

insufficient features, although the document is correctly

classified at the first level node by our merged method.

���������������������������
� � � � � � 	 �
 �� �� �� �� �� �� ��� ��
���� �����

�������������� !"# $%& $%&'()*
Fig. 15. Macroaveraging accuracy on Edoc

��
� � 	
 � � � � � �� �� �� �	 �
 �� ��� ��
���� �����

�������������� !"# $%& $%&'()*
Fig. 16. Microaveraging accuracy on Edoc

5. CONCLUSIONS

When using hierarchical taxonomies, a large multi-

class classification problem are divided into multiple

sub-problems. Indeed, the accuracy and efficiency of

the classification are significantly improved. In this

������������������������������
� � � � � � 	 �
���
���� �����

�������������� ! "#$ "#$%&'(
Fig. 17. Macroaveraging accuracy on EdocTop50

����������������������������������	���
����
� � 	
 � � � � �� ��
���� �����

������������� !" #$% #$%&'()
Fig. 18. Microaveraging accuracy on EdocTop50

paper, we propose a method based on learning from

classification results to adjust the predefined hierarchi-

cal taxonomy. The classification results of validation

data are used to merge the classes in which documents

are frequently misclassified to each other. That could

enhance the classification performance in new branches

of the class hierarchy. Detailedly, three factors, biases

between classes, feature distribution, and training data

size, are applied for measuring the need of merging

classes. Also, three merge-prohibiting conditions are

designed for guaranteeing that (1) training sets are con-

sistent with classification models and (2) the overfitting

problem is avoided. In the experiments, our results

show that macroaveraging/microaveraing accuracy is

improved 1%/1.6% and 9%/1.8% by our method on

ModApte and ModApteTop10, respectively. How-

ever, our method doesn’t work well on 20NewsGroup

�������������������������������	������

 � � � �� ��
���� �����

�������������� ! "#$ "#$%&'(
Fig. 19. Macroaveraging accuracy on EdocTop25

���������������
��������

� � � � �� 		
��	
 �����
���������������� !" !"#$%&

Fig. 20. Microaveraging accuracy on EdocTop25

because the distribution of documents in each class is

balanced. That is not a common property in real-world

datasets. And, there is only little improvement on Edoc

since there are not sufficient feature sets. In summary,

our method is practically useful to adjust the predefined

hierarchy based on learning from classification results.

In the future, formula of the factors for measuring

needs to merge classes should be studied more de-

tailedly. That could improve the accuracy and effi-

ciency of classification on the hierarchical taxonomy.

Also, a suitable stop criteria should be carefully defined

in order to gain the highest classification accuracy

when the adjusting procedure stops.

REFERENCES

[1] Wikipedia. Available: http://www.wikipedia.org/

[2] S. Dumais and H. Chen. ”Hierarchical classification of web

content,” in Proceedings of the 23rd annual international ACM

SIGIR conference on Research and development in information

retrieval, pp. 256-263, 2000.

[3] D. Koller and M. Sahami. ”Hierarchically classifying docu-

ments using very few words,” in Proceedings of the Fourteenth

International Conference on Machine Learning, pp. 170-178,

1997.

[4] T. Y. Liu, Y. M. Yang, H. Wan, H. J. Zeng, Z. Chen, and W. Y.

Ma. ”Support vector machines classification with a very large-

scale taxonomy”, ACM SIGKDD Explorations Newsletter, vol.

7(1), pp. 36-43, 2005.

[5] L. Cai and T. Hofmann. ”Hierarchical document categorization

with support vector machines,” in Proceedings of the thirteenth

ACM international conference on Information and knowledge

management, pages 78V87, 2004.

[6] J. A. Hartigan. Clustering Algorithms, Wiley, 1975.

[7] K. Punera, S. Rajan, and J. Ghosh. ”Automatically learning

document taxonomies for hierarchical classification,” Special

interest tracks and posters of the 14th international conference

on World Wide Web, pages 1010-1011, 2005.

[8] L. Tang, J. P. Zhang, and H. Liu. ”Acclimatizing Taxonomic

Semantics for Hierarchical Content Classification,” in Proceed-

ings of the 12th ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 384-393, 2006.

[9] C. Cortes and V. Vapnik. The Nature of Statistical Learning

Theory, Springer, 1995.

[10] K. Wang, S. Q. Zhou, and S. C. Liew. ”Building hierarchical

classifiers using class proximity”, in Proceedings of the 25th

International Conference on Very Large Data Bases Confer-

ence, pages 363-374, 1999.

[11] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data,

Prentice Hall, Englewood Cliffs, NJ, 1988.

[12] M. Aghagolzadeh , H. Soltanian-Zadeh, B. Araabi, A.

Aghagolzadeh. ”A Hierarchical Clustering Based on Mutual

Information Maximization”, IEEE International Conference on

Image Processing, vol. 1, pp. 277-280, 2007.

[13] K. Punera, S. Rajan, and J. Ghosh. ”Automatic Construction

of N-ary Tree Based Taxonomies,” in Proceedings of the Sixth

IEEE International Conference on Data Mining, pp. 75-79,

2006.

[14] I. S. Dhillon, S. Mallela, and R. Kumar. ”Enhanced word clus-

tering for hierarchical text classification”, in Proceedings of the

eighth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 191-200, 2002.

[15] D. Lewis. Reuters-21578 Text Categorization Test

Collection, Distribution 1.0, Manuscript, 1997. Available:

http://www.daviddlewis.com/resources/testcollections/reuters21578.

[16] T. Mitchell. 20 Newsgroups. Available:

http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html.

[17] G. Salton, C. Buckley. ”Term Weighting Approaches in Au-

tomatic Text Retrieval”, Information Processing and Manage-

ment, vol. 24(5), pp. 513-523, 1988.

[18] T. Joachims. SVMlight. Available:

http://svmlight.joachims.org/

