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Abstract—We formulate group buying 
problem as a combinatorial reverse auction 
problem with multiple buyers and multiple sellers. 
We propose the concept of proxy buyer to deal 
with this problem. The proxy buyer consolidates 
the demands from the buyers and then holds a 
reverse auction to try to obtain the goods from a 
set of sellers who can provide the goods. The 
main results include: (1) a problem formulation 
for the combinatorial reverse auction problem; 
(2) a solution methodology based on Lagrangian 
relaxation and (3) analysis of numerical results 
based on our solution algorithms. 
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1. INTRODUCTION 

Group buying is an important business 
model. By forming a coalition, buyers can 
also improve their bargaining power and 
negotiate more advantageously with sellers to 
purchase at a lower price. In this paper, we 
study coalition formation problem in group 
buying. We formulate this problem as a 
combinatorial reverse auction with multiple 
buyers and multiple sellers. Online auction 
plays an important role in the electronic 
market. Auctions are popular, distributed and 
autonomy preserving ways to allocate items 
or goods to maximize revenue or minimize 
cost.  

Applying combinatorial auctions in 
corporations’ procurement processes can lead to 
significant savings [10] and [11]. There are, 
however, several problems with combinatorial 
auctions. Combinatorial auctions have been 
notoriously difficult to solve from a 
computational point of view [12]. Combinatorial 
auction is closely related to the set 
packing/knapsack problem [13]. It deals with 

computational aspects and heuristics for solving 
what is known as the Winner Determination 
Problem of an auction [14], [15], [16], [17], [18] 
and [19]. 

An excellent survey on combinatorial auctions 
can be found in [1] and [3]. In a combinatorial 
auction [1], bidders may place bids on 
combinations of items, which allows the bidders 
to express complementarities between items 
instead of having to speculate into an item's 
valuation about the impact of possibly getting 
other, complementary items. The combinatorial 
auction problem can be modeled as a set packing 
problem (SPP), a well-known NP-complete 
problem [4]-[8]. Many algorithms have been 
developed for combinatorial auction problems. 
For example, in [2], [17], [18] and [19], the 
authors proposed a Lagrangian Heuristic for a 
combinatorial auction problem. Exact algorithms 
have been developed for the SPP problem, 
including a branch and bound search [8], iterative 
deepening A* search [7] and the direct 
application of available CPLEX IP solver [4]. 
However, in real world, combinatorial reverse 
auction may take place with multiple buyers and 
multiple sellers. Motivated by the deficiency of 
the existing studies, we consider a combinatorial 
auction problem in which there are multiple 
buyers and multiple sellers. We propose the 
concept of proxy buyer to deal with this problem. 
The proxy buyer consolidates the demands from 
the buyers and then holds a reverse auction to try 
to obtain the goods from a set of sellers who can 
provide the goods. Each seller places bids for 
each bundle of goods he can provide. The 
problem is to determine the winners to minimize 
the total cost for the proxy buyer. 

The remainder of this paper is organized as 
follows. In Section 2, we present the winner 
determination problem formulation for proxy 
buyer’s combinatorial reverse auction problem. 
In Section 3, we propose the Lagrangian 
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relaxation algorithms. In Section 4, we present 
the numerical examples and analyze the results of 
our solution approach. We conclude this paper in 
Section 5. 

 

2. GROUP BUYING BASED ON 
COMBINATORIAL REVERSE 
AUCTION 

In this paper, we first formulate the above 
combinatorial optimization problem as an integer 
programming problem. We then develop solution 
algorithms based on Lagrangian relaxation. 
Consider an application scenario in which Buyer 
1 requests to purchase at least a bundle of items 
1A, 2B and 3C from the market, and Buyer 2 
requests to purchase at least a bundle of items 2A, 
3B and 1C from the market .There are three 
bidders, Seller 1, Seller 2 and Seller 3 who place 
bids in the system. Suppose Seller 1 places two 
bids. The first bid is (2A, 2B, 11P ) and the second 
bid is (1B, 1C, 12P ), where 11P and 12P denote the 
prices of the first bid and the second bid. Seller 2 
places two bids. The first bid is (1A, 1B, 21P ) 
and the second bid is (1A, 2B, 2C, 22P ). Seller 3 
places two bids. The first bid is (1A, 1C, 31P ) and 
the second bid is (1B, 2C, 32P ). We assume that 
all the bids entered the auction are recorded. A 
bid is said to be active if it is in the solution. We 
assume that there is only one bid active for all the 
bids placed by the same bidder. For this example, 
the solution for this reverse auction problem is 
Seller1: (2A, 2B, 11P ), Seller 2: (1A, 2B, 2C, 22P ) 
and Seller 3: (1B, 2C, 32P ). 

Consider a buyer who requests a set of items to 
be purchased. Let K denote the number of items 
requested. Let kd denote the desired units of 
the thk − items, where },....,3,2,1{ Kk ∈ . In a 
combinatorial auction, there are many bidders to 
submit a tender. Let I denote the number of 
bidders in a combinatorial auction. 
Each },....,3,2,1{ Ii∈ represents a bidder. To model 
the combinatorial reverse auction problem, the 
bid must be represented mathematically. We use 
a vector ijb = ),,...,,,( 321 ijijKijijij pqqqq to represent 
the thj − bid submitted by bidder i , where ijkq is a 
nonnegative integer that denotes the quantity of 
the thk − items and ijp is a real positive number 
that denotes the price of the bundle. As the 
quantity of the thk − items cannot exceed the 
quantity kd , it follows that the 
constraint kijk dq ≤≤0 must be satisfied. 
The thj − bid ijb is actually an offer to 

deliver ijkq units of items for each },....,3,2,1{ Kk ∈ a 
total price of ijp . Let in denote the number of bids 
placed by bidder },....,3,2,1{ Ii∈ . To formulate the 
problem, we use the variable ijx to indicate 
the thj − bid placed by bidder i is active ( ijx =1) 
or inactive ( ijx =0). The winner determination 
problem can be formulated as an Integer 
Programming problem as follows. 
Winner Determination Problem (WDP):   
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 In WDP problem, we observe that the coupling 

among different operations is caused by the 

contention for resources through the minimal 

resource requirement constraints (2-1). 

3. SOLUTION ALGORITHM 

For a given Lagrange multiplier λ , the 
relaxation of constraints (2-1) decomposes the 
original problem into a number of bidder’s 
subproblems (BS). These subproblems can be 
solved independently. That is, the Lagrangian 
relaxation results in subproblems with a highly 
decentralized decision making structure. 
Interactions among subproblems are reflected 
through Lanrange multipliers, which are 
determined by solving the following dual 
problem. 
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)(nj λL defines a bidder’s subproblems (BS). Our 

methodology for finding a near optimal solution 

of WDP is developed based on the result of 
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Lagrangian relaxation and decomposition. It 

consists of three parts as follows.  

(1) An algorithm for solving subproblems 

Given λ , the optimal solution to BS 

subproblem )(nj λL can be solved as follows. 
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(2) A subgradient method for solving the dual 

problem )(max
0

λ
λ
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Let lx be the optimal solution to the subproblems 

for given Lagrange multipliers lλ of iteration l . 

We define the subgradient of )(λL as 
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where },...,2,1{ Kk ∈ . 

The subgradient method proposed by Polyak [9] 

is adopted to updateλ as follows 
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estimate of the optimal dual cost. The iteration 

step terminates if lα is smaller than a threshold. 

Polyak proved that this method has a linear 

convergence rate. 

Iterative application of the algorithms in (1) and 

(2) may converge to an optimal dual solution 

( *x , *λ ).  

(3) A heuristic algorithm for finding a near-

optimal x , feasible solution based on the 

solution  ( *x , *λ )  of the relaxed problem 

The solution ( *x , *λ ) may result in one type of 

constraint violation due to relaxation: assignment 

of the quantity of items less than the demand of 

the items. Our heuristic scheme first checks all 

the demand constraints 
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0K denotes the set of demand constraints violated. 

Let 0N = }0},,....,3,2,1{{ * =∈ njxNnn . 

0N denotes the set of bidders that is not a winner 

in solution *x .  To make the set of 

constraints 0K satisfied, we first pick 0Kk ∈ with 
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The heuristic algorithm proceeds as follows to 

make constraint k satisfied. 

Select 0Nn∈ with nj0},,...,2,1{
pminargn

>∈
=

njkqNn
and 

set *
njx =1. After performing the above operation, 

we set }{\00 nNN ← . If the violation of the k -th 

constraint cannot be completely resolved, the 

same procedure repeats. Eventually, all the 

constraints will be satisfied. We use x to denote 

the resulting feasible solution obtained from the 

above heuristics. 



AIT 2010 

2010 International Conference on Advanced Information Technologies (AIT) 

4. NUMERICAL RESULTS AND 
ANALYSIS 

Based on the proposed algorithms for 
combinatorial reverse auction, we conduct 
several examples to illustrate the validity of our 
method. 
Example 1: Consider two buyers who will 
purchase a set of items as specified as follows.  
For this example, we have 

,1,2,1,42,7,3 131211 ======= dddKJNI
,2,2,3,0,1,4 312423222114 ====== dddddd

.1,1,3 343332 === ddd  
The first bids and the second bids placed by the 
seven potential sellers’ bids are shown as follows. 

,0,0,1,3,2 211114113112111 ===== qqqqq  
,2,1,2,3,0 312311214213212 ===== qqqqq  
,0,0,0,4,0 413412411314313 ===== qqqqq  

,0,0,0,1,1 514513512511414 ===== qqqqq  
,1,0,1,0,0 711614613612611 ===== qqqqq  

.1,1,1 714713712 === qqq  

,1,1,1,0,0 221124123122121 ===== qqqqq  

,0,1,2,0,0 322321224223222 ===== qqqqq  
,2,2,0,0,1 423422421324323 ===== qqqqq  
,0,0,1,3,0 524523522521424 ===== qqqqq  
,0,2,1,0,0 721624623622621 ===== qqqqq  

.0,2,2 724723722 === qqq  
 
Suppose the prices of the bids are: 

,6,23,100,85,48 5141312111 ===== ppppp
,61,16 7161 == pp  

,35,55,30,60,50 5242322212 ===== ppppp
.60,60 7262 == pp  

 
Suppose we initialize the Lagrange multipliers as 
follows. 

0.20)4(,0.15)3(,0.10)2(,0.5)1( ==== λλλλ . 
Our algorithm the subgradient algorithm 
converges to the following solution: 

*
31x =1and *

njx =0 for all the other n . As the above 
solution is a feasible one, the heuristic algorithm 
needs not be applied. Therefore, 31x =1, 11x =1, 

21x =1, 42x =1, 52x =1, 62x =1. The solution *x is 
also an optimal solution. The duality gap of the 

solution is 3.75%. The duality gap is within 5%. 
This means the solution methodology generates 
near optimal solution. 
Despite the duality gap is not zero, the 
solution x is also an optimal solution for this 
example. 
  

5. CONCLUSION 

In this paper we deal with group buying based on 
combinatorial reverse auction. Most studies on 
combinatorial reverse auction focus on auction with 
single buyer/multiple sellers. Combinatorial auction 
enables several bidders to bid on different 
combination of goods simultaneously according to 
personal preferences and offer those items a combined 
price. We propose the concept of proxy buyer to deal 
with this problem. The proxy buyer consolidates the 
demands from the buyers and then holds a reverse 
auction to try to obtain the goods from a set of sellers 
who can provide the goods. Each seller places bids for 
each bundle of goods he can provide. We formulate a 
winner determination optimization problem for 
combinatorial auction with a proxy buyer. The 
demands of the proxy buyer impose additional 
constraints on determination of the winners. The 
problem is to determine the winners to minimize the 
total cost to acquire the required items. The main 
results include: (1) a problem formulation for the 
combinatorial reverse auction problem; (2) a solution 
methodology based on Lagrangian relaxation and (3) 
analysis of numerical results based on our solution 
algorithms. Analysis of the numerical results shows 
that our algorithm can generate near-optimal solution 
within acceptable CPU time. 
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