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Abstract—In this paper, we will introduce a 
novel family of interconnection network 
topologies, named disc-ring networks. Disc-
ring networks possess many desirable 
topological properties in building parallel 
machines, such as fixed degree, small diameter, 
hamiltonian decomposable, etc. We will study 
some topological properties of disc-ring 
networks. Furthermore, we also present an 
efficient routing algorithm for disc-ring 
networks.  
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1. INTRODUCTION 

Parallel computing is important for speeding 
up computation. The design of an interconnection 
network is the first thing to be considered. Many 
topologies have been proposed in the literature [1, 
2, 3, 5, 7, 9, 10, 11], and the desirable properties 
of an interconnection network include symmetry, 
small diameter, relatively small  degree, 
embedding capabilities, scalability, fault-tolerant 
robustness, efficient routing, and hamiltonian 
decomposition. Among those proposed 
interconnection networks, the hypercube is a 
popular interconnection network with many 
attractive properties such as regularity, symmetry, 
small diameter, strong connectivity, recursive 
construction, partition ability, and relatively low 
link complexity [13] In the literature, many 
variants of hypercube, including twisted cube [9], 
locally twisted cube [14], crossed cube [6, 7], 
augmented cube [2], and Möbius cube [3], etc, 
have been studied. These variants possess better 
topology properties than hypercube. For example, 
the diameter of these variants of hypercube is 
about half of the network diameter of the 
comparable hypercube. The architecture of an 

interconnection network is usually modeled by a 
graph in which the nodes represent the processing 
elements and the edges represent the 
communication links. In this paper, we will use 
graph and network, vertex and node, and edge 
and link interchangeably. 

In this paper, we will introduce a simple and 
regular architecture called disc-ring network. 
Disc-ring network is constructed from two rings 
with the same number of nodes by adding some 
additional links between the two rings. We will 
analyze the topological properties of disc-ring 
networks. We derive the upper bound on the 
diameter of a disc-ring network and show that 
they are hamiltonian decomposable, i.e., the 
edges of a disc-ring network can be partitioned 
into disjoint Hamiltonian cycles. We then present 
and analyze an efficient routing algorithm for 
disc-ring networks. 

The rest of the paper is organized as follows. 
In Section 2, we introduce some notations used 
throughout the paper. We then define a family of 
interconnection networks, namely disc-ring 
networks. Section 3 examines the topology 
properties of disc-ring networks. In Section 4, we 
give an efficient routing algorithm in disc-ring 
networks and analyze its performance. Finally, 
we conclude this paper in Section 5. 

2. DISC-RING NETWORK 

We usually use a graph to represent the 
topology of an interconnection network. A graph 
G = (V, E) is a pair of the node set V and the edge 
set E, where V is a finite set and E is a subset of 
{(u, v) | (u, v) is an unordered pair of V}. We will 
use V(G) and E(G) to denote the node set and the 
edge set of G, respectively. If (u, v) is an edge in 
a graph G, we say that u is adjacent to v and u, v 
are incident to edge (u, v). A neighbor of a node v 
in a graph G is any node that is adjacent to v. 
Moreover, we use NG(v) to denote the set of 



neighbors of v in G. The subscript ‘G’ of NG(v) 
can be removed from the notation if it has no 
ambiguity. A graph G is called k-regular if |NG(v)| 
= k for any node v in G. The distance, denoted by 
dist(u, v), between node u and node v in a graph 
is the length of a shortest path from u to v. The 
diameter, denoted by diam(G), of a graph G is 
the maximum distance between any two nodes in 
it. 

Let G = (V, E) be a graph with node set V and 
edge set E. A (simple) path P of length l in G, 
denoted by v0 → v1 → … → vl−1 → vl, is a 
sequence (v0, v1, … , vl−1, vl) of nodes such that (vi, 
vi+1) ∈ E for 0 ≤ i ≤ l−1. The first node v0 and the 
last node vl visited by P are denoted by start(P) 
and end(P), respectively, and they are called the 
end nodes of P. In addition, P is a cycle if |V(P)| 
≥ 3 and end(P) is adjacent to start(P). A path P = 
v0 → v1 → … → vl−1 → vl may contain another 
subpath Q, denoted as v0 → v1 → … → vi → Q → 
vj → … → vl−1 → vl, where Q = vi → vi+1 → … → 
vj for 0 ≤ i ≤ j ≤ l. A path (or cycle) in G is called 
a Hamiltonian path (or Hamiltonian cycle) if it 
contains every node of G exactly once. Two 
paths (or cycles) P1 and P2 connecting a node u to 
a node v are said to be edge-disjoint if and only if 
E(P1) ∩ E(P2) = φ. Two paths (or cycles) Q1 and 
Q2 of graph G are called node-disjoint if and only 
if V(P1) ∩ V(P2) = φ. Two node-disjoint paths Q1 
and Q2 can be concatenated into a path, denoted 
by Q1 ⇒ Q2, if end(Q1) is adjacent to start(Q2). 

For positive integers z and m, define z||m to be z 
if z ≥ 0, and to be z+m otherwise. And, z%m 
denotes the remainder of the division of z by m. 

We define a novel interconnection network, 
namely disc-ring network, as follows. A disc-ring 
network, represented by D(m, d), consists of two 
rings, where 1 ≤ d ≤ m and each ring contains m 
nodes. One ring is called inner ring and the other 
is called outer ring. Each node is labeled by a 
sequence z1z2 of two integers z1, z2, where z1 is 
called the first index while z2 is called the second 
index. If node z1z2 is in outer ring, then z1 = 0; 
otherwise, z1 = 1. The nodes in each ring is 
labeled from 0 to m−1 sequentially in the 
counterclockwise manner; that is, for node z1z2 in 
one ring, 0 ≤ z2 ≤ m−1. The links between two 
nodes in the same ring are defined as follows: 
Each node z1z2 is adjacent to node z1x for x ∈ 
{(z2+1)%m, (z2−1)||m}. The links between two 
nodes in the distinct rings are defined as follows: 
For any node 0z2 in the outer ring, there is a link 
connecting it to node 1y for y ∈ {z2, (z2+1)%m, 
(z2+2)%m, … , (z2+d−1)%m}. The formally 

definition of disc-ring network is introduced as 
follows. 

Definition 1. The disc-ring network, represented 
by D(m, d), consists of outer and inner rings, 
where each ring contains m nodes and 1 ≤ d ≤ m. 
The node set of D(m, d) is {z1z2 | z1 = 0 or 1, and 
z2 ∈ {0, 1, …, m−1}, where z1z2 is a sequence of 
two integers and is a label of a node. Node 0z2 is 
in the outer ring while node 1z2 is in the inner 
ring. For any node z1z2, there is a link connecting 
it to node z1x for x = (z2+1)%m. For any node 0z2, 
0 ≤ z2 ≤ m−1, there is a link connecting it to node 
1y for y ∈ {z2, (z2+1)%m, (z2+2)%m, … , (z2+d− 
1)%m}. 

By the above definition, the disc-ring network 
D(m, d) contains 2m nodes and is a (d+2)-regular 
and undirected graph. Thus, D(m, d) contains 
m(d+2) links (edges). For example, Fig. 1 depicts 
D(6, 3) and D(5, 2). We can easily verify that 
D(m, 1) is a prism graph (or called circular ladder 
graph) [4, 8] and D(4, 1) is isomorphic to a 3-
dimensional hypercube. 
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Fig. 1. The disc-ring networks D(6, 3) and D(5, 
2), where the black circles denote the outer ring 
nodes while those white circles denote the inner 
ring nodes. 

It is not difficult to verify from the definition 
of disc-ring network that the following lemma 
holds true. 

Lemma 1. Let D(m, d) be a disc-ring network. 
Then, the following statements hold true: 
(1) Each node 0z2, 0 ≤ z2 ≤ m−1, of D(m, d) is in 
the outer ring and is adjacent to node 1y in the 
inner ring for y ∈ {z2, (z2+1)%m, (z2+2)%m, … , 
(z2+d−1)%m}. 
(2) Each node 1z2, 0 ≤ z2 ≤ m−1, of D(m, d) is in 
the inner ring and is adjacent to node 0z in the 
outer ring for z ∈ {z2, (z2−1)||m, (z2−2)||m, … , 
(z2−d+1)||m}. 



For example, node 05 in D(6, 3) shown in Fig. 
1(a) is adjacent to nodes 15, 10, 11; and node 10 
is adjacent to nodes 00, 05, 04. 

3. TOPOLOGY PROPERTIES OF DISC-
RING NETWORKS 

In this section, we will examine the major 
topology properties of disc-ring networks, such 
as diameter and hamiltonian decomposition. 

We first observe that the disc-ring network is 
outer-inner ring symmetric. If we exchange the 
nodes of outer ring and inner ring, and relabel the 
nodes of each ring sequentially in a clockwise 
manner, the resultant network is isomorphic to 
the original disc-ring network. For example, 
relabeling D(6, 3) shown in Fig. 1(a) will obtain a 
network shown in Fig. 2 which is isomorphic to 
D(6, 3). We then have the following lemma. 
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Fig. 2. Exchanging and relabeling the nodes of 
outer ring and inner ring for D(6, 3) shown in Fig. 
1(a). 

Lemma 2. Let D(m, d) be a disc-ring network. 
Then, exchanging the outer ring and inner ring of 
D(m, d) and relabeling the nodes of each ring in 
the clockwise manner will result in an isomorphic 
network for D(m, d). 

Next, we will examine the diameter of disc-
ring network D(m, d). We first compute the 
diameter of a ring as follows. 

Lemma 3. The diameter of a ring with m nodes is 
 2

m . 
Proof: Let R be a ring with m nodes. We first 

label the nodes of R from 0 to m−1 sequentially 
in the counterclockwise manner. Since the 
symmetric structure of a ring, we can pick the 
node 0 and compute the shortest path from node 
0 to any other node in R. Since each node x, 0 ≤ x 
≤ m−1, of R is adjacent to nodes (x+1)%m and 

(x−1)||m, the distance between node 0 and node z 
is min{z−0, m−z}, where z−0 is the length of path 
from node 0 to node z in the counterclockwise 
direction and m−z is the length of path from node 
0 to node z in the clockwise direction. When z = 
 2

m , the distance between node 0 and node z is 
the largest. Therefore, the diameter of a ring with 
m nodes is  2

m . □ 

For determining the diameter of disc-ring 
network D(m, d), we first consider the case of d ≤ 
2. The following lemma can be found in [12] and 
can be verified by the similar arguments in 
Lemma 3. 

Lemma 4. [12] The diameter of disc-ring 
network D(m, d) with d ≥ 2 is  2

3 dm −+ . 

For example, the diameter of D(5, 2) equals to 
the diameter of a ring with 6 nodes, where the 
bold lines in Fig. 3 depict such a ring (00 → 11 
→ 12 → 13 → 14 → 10) with diameter being 
equal to that of D(5, 2). 
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Fig. 3. The ring with diameter being equal to 
diameter of D(5, 2), where the bold lines indicate 
such a ring embedded in D(5, 2). 

We then consider the case of d ≥ 3 for 
computing an upper bound on the diameter of 
disc-ring network D(m, d). We will obtain an 
upper bound on the diameter of D(m, d) with d ≥ 
3 to be   21 +−d

m  in the following lemma. 

Lemma 5. An upper bound on the diameter of 
disc-ring network D(m, d) with d ≥ 3 is  1−d

m +2. 
Proof: By Lemma 2 and the symmetric 

structure of ring, we can pick the node 00 to 
compute an upper bound of the shortest path 
from node 00 to any other node in D(m, d). We 
first partition the node set of D(m, d) into four 
subsets as follows:  
VA = {1a | 0 ≤ a ≤  2

m },  



VB = {1b |  2
m +1 ≤ b ≤ m−1},  

VC = {0c | 1 ≤ c ≤  2
m }, and  

VD = {0d |  2
m +1 ≤ d ≤ m−1}.  

The above partition is shown in Fig. 4.  
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Fig. 4. The partition of node set in D(m, d) with d 
≥ 3 for computing an upper bound on the 
diameter of D(m, d). 

We will compute the paths from node 00 to 
nodes of VA, VB VC, VD such that their lengths are 
not greater than   21 +−d

m . Then, an upper bound 
of diameter of D(m, d) is obtained. 

We first consider the nodes of VA. Let 1za be a 
node of VA, where 0 ≤ za ≤  2

m . By Lemma 1, 
1za is adjacent to nodes 0z for z ∈ {za, (za−1)||m, 
(za−2)||m, … , (za−d+1)||m} which are in the outer 
ring. We construct a path Pa from node 00 to 
node 1za as follows. Initially, let Pa = 00. Repeat 
the following steps until end(Pa) = 1za. If node 
1za is a adjacent to node end(Pa), then let Pa = Pa 
→ 1za and stop. Otherwise, if end(Pa) is in the 
inner ring, then let end(Pa) = 1z and let Pa = Pa 
→ 0z; else let end(Pa) = 0z, z' = z+d−1, and let Pa 
= Pa → 1z'. Fig. 5 reveals the construction of path 
Pa. For example, given node za = 13 in D(6, 3), 
the above procedure constructs path Pa = 00 → 
12 → 13. We now analyze the length of Pa. By 
Lemma 1, if 0 ≤ za ≤ d−1, then the length of Pa is 
1. Assume that za > d−1 and k(d−1)+1 ≤ za ≤ 
(k+1)(d−1). By the above procedure, the length of 
Pa is not greater than 2k+1. By the definition of 
VA, k(d−1) <  2

m  and hence, 2k+1 <   11 +−d
m , 

i.e., 2k+1 ≤  1−d
m . Thus, dist(00, 1za) ≤  1−d

m . 
We next consider the nodes of VD. Let 0zd be a 

node of VD, where  2
m +1 ≤ zd ≤ m−1. By similar 

construction for Pa, we can obtain a path Pd 
starting from 00 and ending at 0zd as follows. 
Initially, let Pd = 00 → 10. Repeat the following 

steps until end(Pd) = 0zd. If 0zd is a adjacent to 
node end(Pd), then let Pd = Pd → 0zd and stop. 
Otherwise, if node end(Pd) is in the outer ring, 
then let end(Pd) = 0z and let Pd = Pd → 1z; else 
let end(Pd) = 1z, z' = (z−(d−1))||m, and let Pd = Pd 
→ 0z'. Fig. 5 also depicts such a construction of 
path Pd. For example, given node zd = 04 in D(6, 
3), the above procedure constructs path Pd = 00 
→ 10 → 04. We now analyze the length of Pd. 
By Lemma 1, if m−(d−1) ≤ zd ≤ m−1, then the 
length of Pd is 2. Assume that zd < m−(d−1) and 
m−j(d−1)+1 ≤ zd ≤ m−(j+1)(d−1). By the above 
construction of Pd, the length of Pd is not greater 
than 2(j+1). By the definition of VD, m−j(d−1) > 
 2

m +1 and hence,  1−d
m +2 > 2(j+1), i.e., 

 1−d
m +1 ≥ 2(j+1). Thus, dist(00, 0zd) ≤  1−d

m +1. 
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Fig. 5. The routing paths Pa and Pd from node 00 
to nodes of VA and VD, respectively, in D(m, d) 
with d ≥ 3, where solid arrow lines indicate Pa 
and dashed arrowed lines indicate Pd. 

For the nodes in VB and VC, let 1zb ∈ VB and let 
0zc ∈ VC. To obtain a path Pb from 00 to 1zb, we 
first compute a path P'd between 00 and 0zb, 
where 0zb ∈ VD, and then extend it to visit node 
1zb. That is, Pb = P'd → 1zb. By the above 
analysis, the length of P'd is not greater than 
 1−d

m +1. Thus, the length of Pb is not greater 
than  1−d

m +2. To obtain a path Pc from 00 to 0zc, 
we first compute a path P'a between 00 and 1zc, 
where 1zc ∈ VA, and then extend it to visit node 
0zc. That is, Pc = P'a → 0zc. By the previous 
analysis, the length of P'a is not greater than 
 1−d

m . Thus, the length of Pc is not greater than 
 1−d

m +1. 
It follows from the above arguments, we have 

that the distance between node 00 and any other 
node in D(m, d) is not greater than  1−d

m +2. 



Thus, the diameter of D(m, d) is not greater than 
 1−d

m +2. This completes the proof.  □ 

It follows from Lemmas 4 and 5 that the 
following theorem holds true. 

Theorem 6. An upper bound on the diameter of 
disc-ring network D(m, d) is  1−d

m +2 if d ≤ 2; 
and is  1−d

m +2 otherwise. That is, 
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Next, we will study another topology property 
of disc-ring networks that they contain a 
hamiltonian decomposition. We first give the 
definition of hamiltonian decomposition as 
follows. 

Definition 2. A hamiltonian decomposition of a 
network G is a partition of its edge set into 
Hamiltonian cycles; i.e., the edges of G can be 
partitioned into disjoint Hamiltonian cycles. 

By the above definition, a hamiltonian 
decomposition of a k-regular network consists of 
 2

k  edge-disjoint Hamiltonian cycles. Thus, if 
D(m, d) contains a hamiltonian decomposition 
then it contains  2

2+d  edge-disjoint Hamiltonian 
cycles. The following theorem shows that D(m, d) 
contains a hamiltonian decomposition. 

Theorem 7. The disc-ring network D(m, d) 
admits a hamiltonian decomposition. 

Proof: Obviously, D(m, 1) contains a 
Hamiltonian cycle that traverses the outer ring 
and then the inner ring. In the following, we will 
assume that d is even. We will prove by 
induction on d that D(m, d) contains  2

2+d  edge-
disjoint Hamiltonian cycles. Initially, let d = 2. 
Then, D(m, 2) contains two edge-disjoint 
Hamiltonian cycles P1 and P2. The construction 
of P1 and P2 is as follows. Let P1

o = 00 → 01 → 
02 → … → 0(m−2) → 0(m−1) and let P1

i = 
1(m−1) → 1(m−2) → … → 11 → 10. That is, P1

o 
traverses all nodes of the outer ring from node 00 
in the clockwise direction, and P1

i traverses all 
nodes of the inner ring from node 10 in the 
counterclockwise direction. Let P1 = P1

o ⇒ P1
i. 

In addition, let P2 = 00 → 11 → 01 → 12 → … 
→ 0j → 1(j+1) → … → 0(m−2) → 1(m−1) → 10 
→ 0(m−1); that is, P2 alternately traverses the 
nodes of outer ring and inner ring. For example, 
P1 and P2 of D(5, 2) are shown in Fig. 6. Then, P1 
and P2 form two edge-disjoint Hamiltonian 

cycles of D(m, 2). Thus, the lemma holds true 
when d = 2. 

00

10

11

12

14

13

01

02 03

04

 
Fig. 6. Two edge-disjoint Hamiltonian cycles of 
D(5, 2), where solid arrow lines indicate one 
Hamiltonian cycle and dashed arrow lines 
indicate the other cycle. 
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Fig. 7. Three edge-disjoint Hamiltonian cycles 
for disc-ring network D(6, 4), where dashed lines 
indicate a Hamiltonian cycle, dotted lines depict 
another Hamiltonian cycle, and solid lines 
indicate the other Hamiltonian cycle. 

Assume that d = k, k ≥ 2, D(m, k) contains 
 2

2+k  edge-disjoint Hamiltonian cycles. Let P be 
the set of such edge-disjoint Hamiltonian cycles. 
Now, consider that d = k+2. Let Po

* = {00, 
0(m−1), 0(m−2), … , 03, 02, 01} and let Pi

* 
={1(k+1), 1(k), 1(k−1), … , 1(k+4), 1(k+3), 
1(k+2)}. That is, Po

* is a set of nodes in outer 
ring in the counterclockwise manner, and Pi

* is a 
set of nodes in inner ring in the counterclockwise 
manner. We then alternately traverse the nodes of 
Po

* and Pi
* to obtain a cycle P* = 00 → 1(k+1) → 



0(m−1) → 1k → 0(m−2) → 1(k−1) → … → 03 
→ 1(k+4) → 02 → 1(k+3) → 01 → 1(k+2). Then, 
P ∪ {P*} forms a set of  2

4+k  edge-disjoint 
Hamiltonian cycles of D(m, k+2). For example, 
Fig. 7 shows three edge-disjoint Hamiltonian 
cycles of D(6, 4). Thus, the lemma holds true 
when d = k+2. By induction, D(m, d) contains 
 2

2+d  edge-disjoint Hamiltonian cycles, and, 
hence, the lemma holds true.  □ 

4. ROUTING IN  DISC-RING 
NETWORKS 

For efficiency of communication, a simple and 
fast routing algorithm should ensure that a 
message can be forwarded from a source node to 
a destination node along a path. In this section, 
we will propose an efficient routing algorithm for 
disc-ring network D(m, d). Because the routing 
path in D(m, 1) and D(m, 2) can be easily 
constructed, we will assume that a disc-ring 
network D(m, d) with d ≥ 3 is given. Our routing 
algorithm is based on the proof of Lemma 5. The 
algorithm is given by a pair of source and 
destination nodes and constructs a routing path P 
from the source node to the destination node such 
that the length of P is not greater than   1−d

m +2. 
That is, the algorithm achieves the upper bound 
of diameter of D(m, d) which is given in Lemma 
5. The basic idea is as follows. Let VA, VB, VC, VD 
be the partition of node set in the proof of 
Lemma 5, where Fig. 4 depicts the partition. By 
Lemma 2, we can exchange the outer ring and 
inner ring to obtain an isomorphic disc-ring 
network. The exchanging resultant network is 
shown in Fig. 8. The exchanging resultant disc-
ring network preserves the topology of the 
original disc-ring network. Fig. 8 also depicts the 
partition of node set with respect to node 00. 

Observe the topology of the exchanging 
resultant disc-ring network, we have that the 
construction of routing path will be the same no 
matter whether the source node is located in the 
outer ring or not. The routing algorithm is 
formally presented as follows. 

Algorithm Routing-DiscRing 
Input: The source node xy and the destination 
node x'y' in disc-ring network D(m, d) with d ≥ 3. 
Output: A routing path P from node xy to node 
x'y'. 
Method: 

1. Initially, let P = xy; 
2. if x = 0 then 
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Fig. 8. The resultant network of D(m, d) by 
exchanging the outer ring and inner ring and 
relabeling the nodes in the clockwise manner. 

3. let VA = {1a | a = y, (y+1)%m, (y+2)%m, 
… , (y+  2

m )%m}, 
 VB = {1b | b = (y+  2

m +1)%m, 
(y+  2

m +2)%m, … , (y+m−1)%m}, 
 VC = {0c | c = (y+1)%m, (y+2)%m, … , 

(y+  2
m )%m}, and let 

 VD = {0d | d = (y+  2
m +1)%m, 

(y+  2
m +2)%m, … , (y+m−1)%m}; 

4. else 
5. let VA = {0a | a = (y+  2

m )%m, 
(y+  2

m +1)%m, … , (y+m)%m}, 
 VB = {0b | b = (y+1)%m, (y+2)%m, … , 

(y+  2
m −1)%m }, 

 VC = {1c | c = (y+  2
m )%m, 

(y+  2
m +1)%m, … , (y+m−1)%m}, and 

let 
 VD = {1d | d = y, (y+1)%m, (y+2)%m, …, 

(y+  2
m −1)%m }; 

6. if x'y' ∈ VA or x'y' ∈ VC then 
7. repeat 
8. if x'y' ∈ N(end(P)) then let P = P 

→ x'y'; 
9. else 
10. let end(P) = x*y*; 
11. if x ≠ x* then let P = P → xy*; 
12. else let P = P → (1−x)z, where z 

= (y*+(d−1))%m if x = 0; and z = 
(y*−(d−1))||m otherwise;  

13. until end(P) = x'y'; 
14. else // x'y' ∈ VB or x'y' ∈ VD 
15. repeat 



16. if x'y' ∈ N(end(P)) then let P = P 
→ x'y'; 

17. else 
18. let end(P) = x*y*; 
19. if x = x* then let P = P → 

(1−x)y*; 
20. else let P = P → xz, where z = 

(y*−(d−1))||m if x = 0; and z = 
(y*+(d−1))%m otherwise;  

21. until end(P) = x'y'; 
22. output “P” as a routing path starting from 

xy and ending at x'y', and terminate. 

For example, given source node 04 and 
destination node 11 in disc-ring network D(6, 3) 
shown in Fig. 1(a), the routing algorithm will 
produce the routing path P = 04 → 10 → 11. 

Now, we analyze the complexity of Algorithm 
Routing-DiscRing. Given source node xy and 
destination node x'y', deciding whether x'y' ∈ VA 
can be computed in O(1) time by comparing the 
indices of the input nodes. Thus, lines 2−5 of 
Algorithm Routing-DiscRing can be done in O(1) 
time. By Lemma 5, Lines 7−13 and Lines 15−21 
are repeated by at most O(  1−d

m ) times. Since 
every line in the repeated process can be done in 
O(1) time, Algorithm Routing-DiscRing runs in 
O(  1−d

m ) time. We then have the following 
theorem. 

Theorem 8. Given a source node s and a 
destination node t in disc-ring network D(m, d) 
with d ≥ 3, Algorithm Routing-DiscRing 
computes a routing path P starting from s and 
ending at t in O(  1−d

m ) time, where P achieves 
the upper bound  1−d

m +2 on the diameter of 
D(m, d). 

5. CONCLUDING REMARKS  

In this paper, we first introduce disc-ring 
networks. The structure of disc-ring networks is 
simple and easy to implement. We then examine 
two topology properties on them. We provide an 
upper bound on diameter of disc-ring network 
and show that disc-ring network admits a 
hamiltonian decomposition. We also present an 
efficient routing algorithm on disc-ring network. 
In the future, we will use disc-ring network as 
infrastructure architecture to construct a novel 
compound network constructed from disc-ring 
network and hypercube or its variants.  
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