
Community Detection with Similarity Transition
Jian-Wei Lee, Hung-Wen Peng, and Shie-Jue Lee

Department of Electrical Engineering
National Sun Yat-Sen University

Kaohsiung 80424, Taiwan
Email: {cwlee, wen}@water.ee.nsysu.edu.tw, leesj@mail.ee.nsysu.edu.tw

Abstract—Analysis of social networks, in particular discovering
communities within networks, has been a focus of recent work
and has a variety of applications in many fields. Usually a
network is converted to a graph, from which a set of dense
subgraphs are identified and regarded as distinct communities.
This paper presents a method for identifying a set of dense
subgraphs in a given graph. We exploit the idea of matrix column
or row similarities, in order to find the vertices of concern in the
graph. We apply punishment to the relation matrix and use it to
complement the adjacency matrix several times according to the
diameter of the graph. Furthermore, not every participating node
in the network is required to belong to a certain community. The
effectiveness of the proposed method is demonstrated in several
artificial and real-life examples.

Keywords: Dense subgraph, social network, community.

I. INTRODUCTION

Researchers are interested in the study of networks de-
scribing the topologies of a wide variety of systems, such
as the world wide web, social and communication networks,
biochemical networks, etc. Identifying the community struc-
ture is critical to realizing the the structural and functional
properties of the networks [5]. The issue of community
detection in social media has received an enormous amount of
attention in recent years. Many systems of scientific interest
can be represented as graphs, with nodes or vertices linked
together in couples by lines or edges. Dense subgraphs in a
graph are often interpreted as communities in a corresponding
network [1]–[4], since a complex network is usually consists
of distinct communities within which the connections between
the communities are much fewer than those inside the same
community.

Many methods have been proposed to explore the com-
munity structure of complex networks [6]. There are some
characteristics in real networks like overlapping, directed,
and weighted communities. A node may belong to more
than one community in the case of overlapping communities
[7]. For instance, students in a college may select the same
course. The algorithm EAGLE (agglomerativE hierarchicAl
clusterinG based on maximaL cliquE) is proposed to reveal
both the overlapping and hierarchical community structures in
a network. Chen et al. [8] proposed a method for detecting
dense subgraphs from an undirected and un-weighted graph.
The method simply uses the relation matrix of cosine and
deletes the weight edges in ascending order. The deletion
is performed recursively until dense subgraphs are obtained.
In directed graphs, the directions of the edges aiming to

vertices definitely can allow us to learn the relations among
the vertices. A graph is a weighted graph if a number or
weight is assigned to the edge. The weighted edge represents
the importance between the vertices [9]. The Louvain method,
proposed by Blondel et al. [10], is one of the most popular
algorithms in the field of weighted community detection.

In this paper, we propose a method based on the one
proposed in [8]. Our goal is to identify dense subgraphs
from an undirected and un-weighted graph. Firstly, we use
the cosine to denote the similarity of any two nodes. A
larger cosine shows that the two nodes belong to the same
community with a higher probability. In other words, the two
nodes have a higher chance to share more neighbors. Secondly,
we do the punishment to the matrix M that stores the cosines
of the adjacency matrix A. That is, we multiply a ratio to the
matrix M . The punished matrix is called Mp. The next step is
replace the adjacency matrix A by Mp. The result is called A′.
We do these steps repeatedly according to the diameter of the
graph. Thus, we construct a weighted graph G′(V,E′) based
on the final Mp. Finally, a top-down hierarchical clustering is
performed by deleting edges e′ ∈ E′ one at a time. When G′

turns into disconnected first, V is separated in two subsets.
The process is terminated when the density of the obtained
subsets exceeds a certain density threshold dmin.

The remaining of this article is organized as follows. In
Section II, we describe the idea behind our approach to finding
dense subgraphs in a graph. In Section III, we show the
algorithm and give an example for illustration. In Section IV,
we present some experiments on artificial and real-life data
sets. Finally, we give a conclusion in Section V.

II. PROPOSED METHOD

Given a graph G(V,E) which consists of the vertex set
V and the edge set E, we are concerned about finding dense
subgraphs of G. In other words, we’d like to extract from G the
subgraphs whose density is greater than a specified threshold.
Here, we only focus on undirected graphs. An undirected
graph is one in which edges have no orientation. They are the
most common graphs in mathematics and computer science.
For an undirected graph G(V,E), its density dG is defined as

dG =
|E|

|V |(|V | − 1)/2
(1)

where |E| and |V | denote the size of V and E, respectively.
Note that dG ∈ [0,1].

For a graph G, let A be the adjacency matrix of G. The
entries in A are either 0 or 1. Self-loops in G are not allowed.
Consequently, A is symmetric and its diagonal entries are zero.
Let matrix M store the cosines between any two columns/rows
of the adjacency matrix A:

M =
⟨A(:, i), A(:, j)⟩

∥A(:, i)∥ · ∥A(:, j)∥
(2)

where A(:, i) and A(:, j) are the ith column and the jth

column, respectively, A. The value of cosine signifies as a
probability that the two nodes may belong to a community.
The Chen’s method uses M for detecting subgraphs. Instead,
we do the following:

1) Set C = 0. Let the adjacency matrix be A.
2) Step 1. We compute the matrix M by Eq.(2). Then we

compute another matrix K by{
kij = mij , if S = 1
kij = mij × (1− S

L), if S > 1
(3)

where S is the length of the shortest path between node
i and node j and L is the diameter of the graph G. Note
that the diameter of a graph is defined to be the length
of the longest of all the shortest paths between any two
nodes in the graph. The rationale for this idea is that the
similarity between any two nodes should be larger when
they are closer to each other and vice versa. Diameter
is involved since we want the ratio to be dependent on
the structure of the graph.

3) Step 2. If C equals the diameter of the graph, then M =
K and we are done. Otherwise, set C = C + 1.

4) Step 3. Replace A by A + K, where a + b results in
max(a, b).

5) Step 4. Find M from A by Eq.(3).
6) Repeat Step 1 through Step 4.

Consider Fig. 1, in which node a has three paths to walk to
node e. If a13 = 1.0 and k1,3 = 0.5, we do not replace the

Fig. 1. A graph.

value of a13 = 1.0. However, if a13 = 0.2 and k1,3 = 0.5, we
change the value of a13 to 0.5, i.e., a13 = 0.5. Fig. 2 shows
the result after adding the similarity.

We use the matrix K of the final iteration to construct
a weighted graph G′(V,E′), where the edge e′ij in G′ is
weighted with the corresponding element kij in K. Then we
sort e′ij in ascending order. In the case of e′i1j1 = e′i2j2 , we
consider the degree of nodes i1, j1, i2, and j2. If the degree of

Fig. 2. Adding an edge between node a and node e.

i1 or j1 is the smallest, e′i1j1 is placed in front of e′i2j2 , and vice
versa. Then we delete one edge at a time successively from G′

until it is disconnected, i.e., separated into two disconnected
components. Let G′

1 and G′
2 be the two components, and

G1 and G2 be the subgraphs corresponding to G′
1 and G′

2,
respectively, in G. Note that G1 contains the identical nodes
in G′

1 but the edges in G1 are taken from G. We then check the
density of G1. If its density is greater than a threshold, dthres,
G1 is a desired dense subgraph we are looking for. Otherwise,
we proceed recursively with the above process to separate G′

1

into two disconnected components. When the work for G1 is
done, we continue with G2. The algorithm of finding dense
subgraphs can be described in Algorithm 1.

III. AN EXAMPLE

We give an example here to illustrate the working of our
method. Consider Fig. 3.

Fig. 3. A graph for illustration.

Note that the diameter of this graph is 3. Therefore, we
apply Step 1 through Step 4 three times in obtaining the matrix
M .

Firstly, the adjacency matrix A is

A =


0 1 0 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 0 1
1 0 0 0 0 1
1 0 0 1 1 0



Algorithm 1 Finding Dense Subgraphs of an Undirected
Graph.
Require: Undirected Graph G, density threshold dthres;

1: Construct the matrix M ;
2: Use K to construct G′;
3: Let C be the array of tuples (i, j, kij), kij > 0, i < j;
4: Sort C in ascending order;
5: Call FINDDENSESUBGRAPHS(G,G′,C,dthres);
6: function FINDDENSESUBGRAPHS(G,G′,C,dthres)
7: k = 0;
8: while G′ is connected do
9: Delete edge {C[k].i, C[k].j};

10: k = k + 1;
11: end while
12: Let the connected components be G′

1(V1, E
′
1) and

G′
2(V2, E

′
2);

13: Let the corresponding subgraphs be G1(V1, E1) and
G2(V2, E2);

14: Call FINDDENSESUBGRAPHS-1(G1,G′
1,C,dthres);

15: Call FINDDENSESUBGRAPHS-1(G2,G′
2,C,dthres);

16: end function
17: function FINDDENSESUBGRAPHS-1(G,G′,C,dthres)
18: if dG > dthres then
19: Output G as a dense subgraph;
20: elseif |V | > 1 then
21: Let C1 be a subarray of C, where C1[k].i ∈ V and

C1[k].j ∈ V for all k;
22: Call FINDDENSESUBGRAPHS(G,G′,C1,dthres)
23: end if
24: end function

The matrix M by Eq.(2) is

M =


1.000 0 0.408 0.667 0.408 0.333
0 1.000 0.408 0.333 0.408 0.667

0.408 0.408 1.000 0.408 0 0.408
0.667 0.333 0.408 1.000 0.408 0
0.408 0.408 0 0.408 1.000 0.408
0.333 0.667 0.408 0 0.408 1.000



from which we have

K =


1.000 0 0.136 0.222 0.408 0.333
0 1.000 0.408 0.333 0.136 0.222

0.136 0.408 1.000 0.408 0 0.136
0.222 0.333 0.408 1.000 0.136 0
0.408 0.136 0 0.136 1.000 0.408
0.333 0.222 0.136 0 0.408 1.000

 · · ·

Then we compute A = A + K. This completes the first
iteration, and the second iteration proceeds. For the third

iteration, we have

A =


0 1.000 0.188 0.255 1.000 1.000

1.000 0 1.000 1.000 0.188 0.255
0.188 1.000 0 1.000 0 0.188
0.255 1.000 1.000 0 0.188 1.000
1.000 0.188 0 0.188 0 1.000
1.000 0.255 0.188 1.000 1.000 0



M =


1.000 0.286 0.569 0.767 0.488 0.498
0.286 1.000 0.488 0.498 0.569 0.767
0.569 0.488 1.000 0.488 0.364 0.569
0.767 0.498 1.000 0.488 0.364 0.569
0.488 0.569 0.488 1.000 0.569 0.286
0.498 0.767 0.569 0.286 0.488 1.000



K =


1.000 0.286 0.190 0.256 0.488 0.498
0.286 1.000 0.488 0.498 0.189 0.256
0.190 0.488 1.000 0.488 0 0.190
0.256 0.498 0.488 1.000 0.190 0.286
0.488 0.190 0 0.190 1.000 0.488
0.498 0.256 0.190 0.286 0.488 1.000


The last K is used to construct G′. The nonzero weights of
the graph are sorted as shown in Table I. Figure 4 shows

TABLE I
SORTED NONZERO WEIGHTS OF K

i j K(i, j)
2 5 0.189
1 3 0.190
3 6 0.190
4 5 0.190
1 4 0.256
2 6 0.256
1 2 0.286
4 6 0.286
1 5 0.488
2 3 0.488
3 4 0.488
5 6 0.488
1 6 0.498
2 4 0.498

the result obtained by our method. Note that there are two

Fig. 4. The result of the example.

subgraphs identified.

IV. EXPERIMENTS AND RESULTS

In this section, we show the application of our method on
some artificial and real-life data sets.

A. Artificial Data Set

This section shows the results for the artificial data taken
from in [8]. The characteristics of the graph randomly gen-
erated are shown in Table II. In this graph, there are three

TABLE II
CHARACTERISTICS OF THE ARTIFICIAL GRAPH

Graph Undirected
Whole (100,2000)
Component 1 (25,420)
Component 2 (30,550)
Component 3 (20,290)

components in the graph. In this table, a pair (v, e) indicates
that v vertices and e edges are involved in an adjacency matrix.
Therefore, there are e/2 edges in the corresponding graph
or subgraph. We randomly construct the graph 30 times, by
requiring that the generated graph possessing the same number
of vertices and edges as shown in Table II. In this experiment,
the threshold dmin is 0.6322.

The purpose of this experiment is to show the algorithm is
able to find out the dense components. Therefore, we use the
F -score to be the evaluation measure. For each component i,
let Vi be its vertex set. We compute the F -score by comparing
Vi with the extracted result V̂ as follows:

Fi =
2

1
precision + 1

recall

=
2

|Ṽi|
|Vi

∩
Ṽi|

+ |Vi|
|Vi

∩
Ṽi|

. (4)

Obviously, a score close to 1 indicates that the obtained
component is good. The F -scores obtained for this data set are
shown in Table III. Note that we almost obtain the components

TABLE III
ACCURACY RESULTS

Dense component 1 2 3
F -score 0.9722 0.9883 0.9692

perfectly for this data set. The F -score for each obtained
component is very close to 1.

B. Real-Life Data Sets

In this section, we test our method on real-life data sets.
Two data sets are used. The first one is a well-known network,
named Zacharys karate club network [11], which is a classical
social network data set from the social science literature.
The data were collected from the members of a university
karate club by Wayne Zachary in 1977. Each node represents
a member of the club, and each edge represents a relation
between two members of the club. The network is very small:
it has 34 nodes and 78 undirected edges. This data set consists
of two groups. The groups identified by our method in this
club data set is shown in Fig. 5. According to Fig. 5, nodes
1, 2, 33, and 34 are the crucial nodes in the figure. Our

Fig. 5. The result obtained by our method in the karate club data set.

method adds additional similarity information between nodes
as shown in Fig 2. Therefore, the relations among nodes can
be strengthened.

The next data set is the PolBooks data set. It is about US
politics, compiled by Valdis Krebs. Nodes represent books
about US politics sold by the online bookseller Amazon.com,
and edges mean that the ”customers who bought this book
and also bought these other books” feature on Amazon. It is
a directed network with 105 nodes and 441 edges. Table IV.
By applying our method, two communities are identified and
their F -scores are shown in Table IV.

TABLE IV
THE RESULTS OF POLBOOKS

Community 1 2
F -score 0.897989 0.857143

C. LFR-Benchmark Generated Data Sets

In this section, we do experiments on the data sets with
properties similar to those of the real-life data sets. Nowadays,
people are interested in most of the networks, like biological
networks, social networks, internet and so on. Our purpose
is to try with some graphs with no noise. We use the LFR-
Benchmark generator to generate networks with power-law
degree distribution. By using the LFR-Benchmark generator,
we create communities in high and low density, respectively.
The size of the vertex set |V | is 500. A high density network
has the density larger or equal to 0.5, and a low density
network has the density smaller than 0.5. Here, we generate 10
networks with 4 communities in high density, and 11 networks
with 3 communities in low density. The threshold we set for
each network is the smallest density of the communities in
each network. The simulation results are shown in Table V
and Table VI, respectively.

Next, we use the LFR-Benchmark generator to create a
graph which has four communities. By changing the settings

TABLE V
RESULTS OBTAINED FOR HIGH DENSITY NETWORKS WITH 4

COMMUNITIES

Community 1 2 3 4
F -score 1 1 1 1

TABLE VI
ESULTS OBTAINED FOR LOW DENSITY NETWORKS WITH 3 COMMUNITIES

Community 1 2 3
F -score 1 1 1

of the threshold and investigating the resulting scores, we can
locate the best threshold that will produce the best result.
Table VII shows the F -scores associated with each community
for each specified threshold. Note that when the threshold is

TABLE VII
F-SCORES OF THE FOUR COMMUNITIES IDENTIFIED

Community
Threshold 1 2 3 4
0.1 1 0 0 0.6763
0.2 1 0 0 0.6763
0.3 1 1 0 0.7879
0.4 1 1 1 1
0.5 1 1 1 1
0.6 1 1 1 0.8333
0.7 1 1 1 0.4501
0.8 1 1 1 0.0995
0.9 1 1 0.9339 0.0645
1.0 0.2020 0.2912 0.2063 0.0373

set to be 0.4 or 0.5, we get perfect results. All the communities
are perfectly identified. The average F -scores obtained with
different thresholds are shown in Figure 6. Note that it shows
the average of the F -scores of the four communities identified.

Fig. 6. Average F -scores obtained with different thresholds.

V. CONCLUSION

We have proposed a method to identify meaningful dense
subgraphs from a given graph. The idea of similarity transition
is efficient in finding dense subgraphs. We apply punishment
to the relation matrix and use it to complement the adjacency

matrix several times according to the diameter of the graph.
Furthermore, not every participating node in the network is re-
quired to belong to a certain community. The proposed method
is demonstrated in several artificial and real-life examples. Our
future work is to design a method to extract dense subgraphs in
overlapping and weighted graphs. Many social networks and
real-life data have overlapping structures, indicating that one
node can belong to more than one community. A graph is a
weighted graph if a number (weight) is assigned to each edge.
We intend to modify and strengthen the method proposed in
this paper in the future.

REFERENCES

[1] D. Gibson, J. Kleinberg, and P. Raghavan, “Inferring Web Communities
from Link Topology,” Proc. Ninth ACM Conf. Hypertext and Hyperme-
dia: Links, Objects, Time and Space (HYPERTEXT), 1998.

[2] M.E. Newman. “Detecting Community Structure in Networks,” Euro-
pean Physical J. B, vol. 38, pp. 321-330, 2004.

[3] G.W. Flake, S. Lawrence, and C.L. Giles, “Efficient Identification of
Web Communities,” Proc. Sixth ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining (KDD), 2000.

[4] J. Leskovec, K.J. Lang, A. Dasgupta, and M.W. Mahoney, “Statistical
Properties of Community Structure in Large Social and Information
Networks,” In Proceedings of the 17th international conference on World
Wide Web (WWW),2008.

[5] M.E.J. Newman and M. Girvan, “Finding and Evaluating Community
Structure in Networks,” Physical Review E, vol. 69, 026113, 2004.

[6] M.E.J. Newman, “Finding Community Structure in Networks using the
Eigenvectors of Matrices,” Physical Review E, vol. 74, No. 3, Article
ID 036104, 2006.

[7] H. Shen, X. Cheng, K. Cai, and M.-B. Hu, “Detect overlapping and
hierarchical community structure in networks,” Physica A, vol. 388, No.
8, pp. 1706-1712, 2009.

[8] J. Chen and Y. Saad, “Dense subgraph extraction with application
to community detection,” Knowledge and Data Engineering, IEEE
Transactions, vol. 24, pp. 1216-1230, 2012.

[9] P. De Meo, “Enhancing Community Detection using a Network Weight-
ing Strategy,” Information Sciences, vol. 222, pp. 648-668, 2013.

[10] V. Blondel, J. Guillaume, R. Lambiotte, E. Lefebvre, “Fast Unfolding
of Communities in Large Networks,” Journal of Statistical Mechanics:
Theory and Experiment, P10008, 2008.

[11] W.W. Zachary,“An Information Flow Model for Conflict and Fission in
Small Groups,” Journal of Anthropological Research, vol. 33, No. 4, pp.
452-473, 1977

[12] M.E.J. Newman, “Modularity and community structure in networks,
Proceedings of the National Academy of Sciences of the United States
of America, vol. 103, No. 23, pp. 8577-8582, 2006.

