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Abstract— This paper proposed a novel 

approach which aims to automatically obtain 

the multilevel thresholds of histogram for 

image segmentation purposes.  The proposed 

algorithm is unsupervised, i.e. we don’t make 

any assumption about the input images, the 

number of thresholds, and the distributions of 

histograms. In contrast to the conventional 

algorithms which aim to minimize the within-

class variance or maximize the entropy 

function, our method aims to find 

the ”significant peaks” to represent the major 

clusters of histogram and select the thresholds 

between every pair of successive peaks. The 

significant peaks are determined by the 

proposed histogram local least square 

regression (LLSR), which is robust to noisy 

histogram and false peaks. There are only two 

parameters which are all independent to input 

image and fixed, thus the proposed method is 

adaptive to different cases of histograms. The 

experiments show that our algorithm is able to 

obtain appropriate thresholds without any 

prior knowledge and gives visually satisfactory 

thresholding results. We also proposed a novel 

quantitative index which is suitable for 

evaluating the thresholded histogram. 

 
Keywords—Automatic multi-level histogram 

thresholding, least square regression, image 

segmentation. 

1. INTRODUCTION 

Image segmentation is an important low-level 

image processing technique which is widely used 

as a pre-processing step in many computer vision 

applications. The objects with different colors or 

intensities will be extracted in image 

segmentation step for further processing. 

There are many algorithms for image 

segmentation task. For example, mean shift 

[10][11] are most well-known algorithms for 

their satisfactory segmentation results. 

Comaniciu et al. [10] proposed the first mean-

shift based image segmentation algorithm which 

clusters every pixel to the local mode in high 

dimensional feature space. However, the 

segmentation results depend on the parameter 

settings, i.e. the color distance and spatial 

distance. Moreover, the computational 

complexity is expensive since every pixel is 

clustered in 3-D/5-D feature space for gray/color 

images. 

Image thresholding is another popular 

approach for image segmentation purposes. The 

thresholding can be classified into spatial based 

[12] and histogram based [1]-[8] algorithms. 

Bradley et al. [12] proposed an adaptive 

thresholding algorithm using the integral image 

to achieve real-time performance which is robust 

to extremely non-uniform illumination condition. 

However, this method is only able to binarize the 

image, hence this method is more suitable for 

extracting the text on documents images. 

Histogram based algorithms first compute the 

histogram and find thresholds to classify all the 

pixels into a few intensity values. According to 

the requirement of number of thresholds, the 

histogram based algorithms can be further 

classified into automatic [1]-[4] and semi-

automatic [5]-[8]. Automatic algorithms [1]-[4] 

make no assumption about the number of 

thresholds and find the thresholds to minimize 

some cost functions while semi-automatic 

methods require the number of thresholds as an 

input parameter such that the algorithms can start 

to find the optimal thresholds. The computational 

complexity of histogram based algorithms is 

usually low in contrast to other algorithms since 



these algorithms only process 256 bins rather 

than all pixels in image. In this paper, we focus 

on the histogram based algorithms. 

We proposed a histogram based algorithm 

which aims to find the “significant peaks” based 

on histogram information. To make the algorithm 

robust to noisy histogram, we proposed a local 

least square regression to re-estimate every bin in 

the histogram and obtain the significant peaks. 

The thresholds are located between every two 

successive peaks. The main advantage of our 

method is that there are only two parameters 

independent to the input images, hence the 

proposed algorithm is adaptive to most cases of 

images. 

The remainder of this paper is organized as 

follows. The conventional histogram based 

algorithms are briefly reviewed in Section II. The 

proposed algorithms are described in Section III. 

The experiments and comparisons are shown in 

Section IV. And finally, conclusions are 

summarized in Section V. 

2. RELATED WORKS 

Image thresholding techniques have been 

widely used in many low level computer vision 

applications. Otsu [5] proposed an optimal 

threshold-selection method which selects the 

thresholds to maximizing between-class variance. 

Original Otsu’s method is an exhaustive 

searching algorithm which considers all the 

possible combinations of k (desired number) 

thresholds and selects the optimal ones which 

maximize the between-class variance, hence the 

computational complexity is extremely expensive 

as the number k increase. Liao et al. [6] proposed 

a fast version of Otsu’s method which is able to 

significantly speed up the algorithms. However, 

the complexity still exponentially increases as the 

k increases since the nature of exhaustive 

searching. Dong et al. [7] proposed an algorithm 

which is mathematically equivalent to Otsu’s 

method with only linear complexity of k rather 

than exponential complexity. Lopes et al. [8] 

applied the fuzzy set theory and proposed a 

fuzzy-based algorithm which selects the optimal 

thresholds according to the index of fuzziness. 

The above methods require the number of 

thresholds as input parameter which affects the 

thresholding results and quality. If the number of 

thresholds is equal to the number of modes in the 

histogram, the thresholding results will be 

satisfactory. Otherwise, the image will be over-

segmented or under-segmented. 

To make the thresholding task more adaptive 

to different histogram distribution without any 

prior knowledge, automatic thresholding 

algorithms were proposed in many works, e.g. 

[1]-[4]. Yen et al. [2] proposed an automatic 

method which selects the optimal thresholds 

based on maximizing total correlation. The 

histogram is first separated into two partitions 

and the one of all partitions with largest variance 

will be separated into another two partitions. The 

process repeats until the cost function of 

discrepancy and number of clusters reaches its 

minimum. Sezgin et al. [3] proposed an improved 

version of [2], which selects the optimal 

thresholds based on not only maximizing the total 

correlation but also minimizing the within-class 

variance. The overall separation process is 

similar to the algorithm in [2], except the 

threshold selection criterion. Sahaphong et al. [4] 

proposed an automatic thresholding method 

based on fuzzy c-means clustering algorithm 

which starts from Otsu’s method to find the 

initial two partitions of the histogram and 

increases the threshold number until the change 

of energy function is below a pre-defined 

tolerance. Bruzzese et al. [1] proposed an 

algorithm which selects the thresholds by 

minimizing the fuzzy entropy. The “divide and 

conquer” strategy adopted in [1] is quite similar 

to the algorithms proposed in [2][3]. The 

histogram partitioning process repeats until the 

changing ratio of fuzzy entropy is below a pre-

defined value. 

In general, the automatic methods are more 

suitable for the unsupervised histogram 

thresholding with unknown input images. For 

more comprehensive thresholding algorithms of 

earlier researches, please refer to Segzin’s survey 

of image thresholding [9]. 

3. PROPOSED ALGORITHM 

3.1. Overview 

Histograms of images provide statistical 

information about the intensity or color 

distributions. The ideal histogram is that one 

intensity level represents one object. However, 

there are many factors which affect the captured 

image in real world, e.g., non-uniform 

illumination, noise, blurring, nonhomogeneous 

object textures, etc. Fig. 1 shows the comparison 

of ideal and real-world image histogram. 

Although the histogram is influenced by the 

factors mentioned above, we are still able to 



separate different object or intensity level by 

locating the significant peaks and determine the 

thresholds between two successive peaks to 

segment the object in image. Our goal is to 

develop an algorithm which is automatic and 

adaptive to different histogram distribution 

without any prior knowledge. The overall flow of 

the proposed method is shown in Fig. 2. 

 
Fig. 1. The comparison of ideal and real-world 

image histogram. 

 

 
Fig. 2. The flowchart of the proposed algorithm. 

 

First, we compute the histogram of input 

image I as follows: 

   h g I g


   
x

x             (1) 

where h(g) is g-th bin of histogram, g ∈ [0, 255]. 

We normalize the histogram by dividing each bin 

by the maximal bin: 

 
 

 max
g

h g
H g

h g
                    (2) 

where H(g) is the g-th bin of normalized 

histogram, g ∈ [0, 255]. Note that the 

normalization of our method is different from 

traditional one since we want to fix the scale of 

histogram in the range of minimum 0 and 

maximum 1, such that the parameter setting can 

be fixed. Next, we smooth the histogram and 

obtain peak candidates by applying 2ndorder 

polynomial regression to every bin of histogram. 

The regression is perform in least square sense, 

hence the proposed histogram smoothing scheme 

is named “local least square regression” (LLSR). 

Next, we select the true peaks according to the 

location of peak candidates and the original 

histogram information. Finally, we determine the 

thresholds between every two successive peaks 

and segment the image based on the thresholds.     

3.2. Local least square regression (LLSR) 

Histograms of real-world images may contain 

many noises and “false peaks”. For example, Fig. 

3 shows a desktop image of windows XP and the 

corresponding histogram. It is clear that there are 

many noise and false peaks in the histogram. To 

make the histogram smoother, the intuitive 

method is filtering, e.g. Gaussian filter or mean 

filter. However, the smoothness of filtered 

histogram depends on the window size, hence the 

filtering cannot be adaptive to different histogram 

distributions. The noisier the histogram is, the 

larger windows size is needed. Moreover, these 

linear filters are not able to filter out the false 

peaks clearly. Thus, our goal is to develop an 

algorithm which is able to smooth different 

histograms adaptively without tuning any 

parameter. 

 
Fig. 3. Example image (left) and the intensity 

histogram (right). 

 

Motivated by the data analysis, we apply a 

second order linear regression to find the “trend” 

of data in a window centred at i-th bin and re-

estimate the value of i-th bin according to the 

regression solution. The optimal solution of 

polynomial coefficients is obtained by least 

square method, hence the proposed algorithm is 

named “local least square regression” (LLSR). 

Fig. 4 depicts the LLSR algorithm. To re-

estimate every bin of histogram, the information 

of histogram bins within the window of size 

2*w+1 centred at i-th bin are exploited to least 

square regression. We denote the polynomial 

coefficients of i-th bin as  2 1 0, ,
T

i i i ia a aa , the 



data vector   2 , ,1
T

j j jx  where j ∈ {-w, -w 

+1, ..., 0, ..., w-1, w}, and histogram information 

of i-th bin iy  . The least square regression can be 

written as follows: 

2

arg min
w

T

i j i j

j w

y 



 a x a            (3) 

Let  ,...,
T

w wX x x  be a (2w+1)-by-3 data 

matrix, and  1,...,
T

i i i wy y y , the optimal 

solution of the least square problem can be 

obtained as follows: 

 
1

T T

i i



a X X X y                  (4) 

Consider the boundary problem, i.e. the range of 

the window is out of [0, 255], we reflect the 

histogram information at boundaries 0 and 255. 

In other words, the elements 
i jy 

  in (3) should 

be re-written as follows: 

    

  
 

, 0.

510 , (i j) 255.

, .

i j

h i j if i j

y h i j if

h i j otherwise



    


    




   (5) 

The LLSR processes every bin of histogram, as 

shown in Fig. 5. It is obvious that the re-estimate 

histogram is much smoother than the original one. 

 

 

 
Fig. 4. Illustration of LLSR algorithm. All the 

histogram information in the window centred at i-

th bin are exploited to re-estimate the i-th bin. 

The sliding window will process all the bins of 

histogram. 

 

 

 
Fig. 5. Left: original histogram. Right: histogram 

re-estimated and smoothed by local least square 

regression. The peaks are much clearer than 

original ones. 

3.3 Peak candidates 

The estimated coefficients of a second order 

polynomial (parabola) can be further exploited to 

determine whether the i-th bin is a possible peak 

or not. A peak can be described as a “downward 

parabola”, hence we only have to consider the 

coefficient of second order term, namely 2ia .  

Fig. 6 shows different 2ia  and the corresponding 

curves of second order terms. 2 0ia   describes 

an upward parabola, which is obviously not a 

peak. However, if 2ia  approaches to 0, the 

second order polynomial function degrades to 

linear or constant function. Here we set a pre-

defined a positive value θ for 2ia  to select 

possible peaks. In other words, the i-th bin is a 

possible peak if 2ia    . The constraint of 2ia  

only describes a downward parabola. However, 

as shown in Fig. 7, the peak of second order 

polynomial may not locate at i-th bin (the center 

of window), hence we defined the second 

condition to eliminate inappropriate peak 

candidates. Let  ˆ ˆ ˆ ˆ,..., ,...,
T

i i w i i wy y y y  be 

the histogram bins estimated by ia  and X , 

ˆ
i iy Xa                             (6) 

As shown in Fig. 7, an appropriate peak is at least 

greater than the two boundary bins in the window, 

i.e. ˆ
i wy   and ˆ

i wy  . Hence the i-th bin with 

coefficient 2ia    which satisfies ˆ ˆ
i i wy y   

and ˆ ˆ
i i wy y   is defined as a peak candidate. 

 

 

 
Fig. 6. Examples of different coefficients of 2

nd 

order term. 

 



 
Fig. 7. Examples of different downward 

parabolas. 

3.4. Thresholds selection 

After LLSR re-estimation and selection of 

peak candidates, we refine the peaks locations 

from the peak candidates. Since the candidates 

are selected coarsely, one real peak may be 

surrounded by many candidates. Hence a simple 

rule for truth peaks selection is defined as follows: 

  arg max
k

k
g S

p h g


                 (7) 

Where kp  is the k-th peak, g is the gray level 

which belongs to the range of k-th successive 

candidates kS . Note that here we select the peaks 

according to corresponding original histogram 

bins instead of the re-estimated ones since the 

local peaks in original histogram are more 

representative than peaks in the re-estimated 

histogram. Fig. 8(a) shows an example of peaks 

selection. 

 

 
(a) 

 
(b) 

Fig. 8. Peaks and thresholds Selection. (a) Peaks 

selection (b) thresholds selection. 

 

After all the truth peaks are located, we 

determine the thresholds by choosing the 

“deepest valley” between every two successive 

peaks since the valleys usually minimize the 

misclassification error. The thresholds selection 

is defined as follows: 

 
  

1,

arg min
k k

k
g p p

t h g


                    (8) 

where kt  is the k-th threshold. Fig. 8(b) shows an 

example of thresholds selection. The locations of 

thresholds are marked by black vertical lines. The 

thresholded image is shown in Fig. 9. 

Let 
pN  be the number of peaks and tN   be 

the number of thresholds (valleys), tN  is always 

equal to 1pN   in our method. If 1pN  , i.e. 

there is only one peak or even no peak to 

determine one threshold. For this situation, we 

apply the Otsu’s method [5][6] to obtain one 

threshold which optimally divides the histogram 

into two partition. Note that the computational 

complexity of Otsu’s method for binarizing 

histogram is still low. 

 

 
Fig. 9. Example of image thresholding according 

to the thresholds obtained by our method. 

4. EXPERIMENTS 

This section shows the experimental results 

and compares our method with Bruzzese’s 

method [1] and Sezgin’s method [3]. We denote 

the fuzzy entropy thresholding [1] as “FET” and 

Sezgin’s method [3] as “SEZ” in the rest of this 

paper. We tried our best to implement the FET 

and SEZ algorithms according to the steps 

described in the papers for fair comparisons. In 

our method, there are only two parameters, which 

are window size w and the constraints value θ of 

2ia . The window size affects the result of least 

square regression. Smaller w leads to noisier 

estimation while larger w leads to smoother 

estimation. Fortunately, the least square 

regression is not very sensitive to the number of 

data, hence we only need to give a reasonable 

window size, e.g. 10 times the order of 

polynomial model. In this paper, we set w = 10 

and θ = 0.0001, and fixed these two parameters in 

all experiments. 

4.1. Quantitative evaluation 

Since the multilevel thresholding is 

application-dependent, it is difficult to determine 



ground truths for all applications. In [1][3], the 

authors applied the “non-uniformity” (NU) 

or ”uniformity” (U) to evaluate the thresholded 

histogram. The uniformity is given by the 

following equation: 
1 2 2

1

2 2

max max

1 1 1

tN

k kk W
w

U NU
 

 



     


  (9) 

where kw  is sum of the probability density 

function within k-th histogram interval, 
2

k  is the 

corresponding within-class variance, 
2

max  is the 

variance of overall distribution used for 

normalizing the non-uniformity value to [0, 1], 

and 
2

W  is denoted as the total within-class 

variance. The non-uniformity has the same 

meaning as the “discrepancy” defined in [2], 

which describes the difference between 

thresholded histogram and original histogram. 

However, these measurements will monotonic 

decrease as the number of thresholds increases. 

Here we modify the uniformity formula and 

define a novel quantitative index as follows: 
2

2
1 W

B





 


                       (10) 

Where the 
2

W  is the same within-class variance 

in (9) and 
2

B   is a novel between-class variance 

defined as follows: 

   
2 2

1 12

1 1

tN
k k k k k k

B

k k k

w t w t

w w

 
  

 

  
 


  (11) 

where k is the weighted mean of k-th histogram 

interval. The novel between-class variance 

describes the sum of between-class variance with 

respect to each threshold. In contrast to the 

original between-class variance defined in [5] 

which increases as the number of thresholds 

increases, our version of between-class variance 

will not always increase as the number of 

thresholds increases, hence the situation that 

over-segmented histogram leads to high index 

value can be avoided. 

4.2. Results 

In the following experiments, we select some 

test images in the UC Berkeley segmentation 

dataset [13][14], four desktop images of 

Windows XP, and some classical test images in 

image processing area, e.g. Lena, peppers, house, 

cameraman. 

Fig. 10 shows the thresholded images of 

Windows XP desktop. By visual observation, the 

SEZ method gives more details but the 

thresholded image is noisier; the FET method 

gives less number of thresholds and leads to more 

homogeneous results but loses some details; our 

method gives clearer results than SEZ and more 

details than FET. Since our algorithm aims to 

find the significant peaks and there is only one 

peak in the image winter, hence our algorithm 

switches to Otsu’s method and find one optimal 

threshold to separate the histogram. Table 1 lists 

the evaluation of thresholded histograms using 

(10), the values marked by black bold style are 

the highest index values corresponding to each 

test image. 

 

TABLE 1 

Evaluations of Windows XP Desktop Images 

Images SEZ[3] FET[1] Ours 

Blue hills 0.9487 0.9053 0.9765 
Water lilies 0.9439 0.6971 0.9409 
Sunset 0.9017 0.8070 0.9110 
Winter 0.9525 0.8847 0.8044 

Average 0.9367 0.8235 0.9082 
 

Fig. 11 shows the thresholded images of 

classical test images. Our method still gives more 

homogeneous images than images thresholded by 

SEZ, and preserves more details than images 

thresholded by FET. The quantitative index 

values are shown in Table 2. Note that our 

method obtained the lowest quantitative index 

value for thresholding Sailboat image, however, 

the result is still acceptable. 

 

TABLE 2 

Evaluations of Classical Test Images 

Images SEZ[3] FET[1] Ours 

Lena 0.9397 0.7376 0.9220 

Peppers 0.9338 0.9719 0.9702 

House 0.9240 0.6032 0.9252 

Cameraman 0.9419 0.9046 0.9420 

Sailboat 0.9393 0.9327 0.8814 

Average 0.9357 0.8300 0.9282 
 

Fig. 12 and Fig. 13 show 14 images we 

selected from UC Berkeley segmentation dataset 

[14] for visual comparisons. By observation, our 

algorithm gives clearer thresholded images than 

SEZ and preserves more details than FET. Table 

3 lists the quantitative index evaluated by (10). 

Our algorithm is slightly higher than SEZ and 

greatly higher than FET in most cases. In some 



cases, the SEZ obtained over-segmented 

histograms, the quantitative index values 

decrease since the between-class variance defined 

in (11) become smaller as the number of 

thresholds increases. The FET usually produces 

images with fewer thresholds then other methods, 

hence in some cases with significant multi-modal 

distributions, the images thresholded by FET 

obtained poor index values. 

 

TABLE 3 

Evaluations of UC Berkeley Dataset 

Images SEZ[3] FET[1] Ours 

UCB-1 0.9577 0.5606 0.9547 

UCB-2 0.9709 0.9732 0.9454 

UCB-3 0.9676 0.8594 0.9368 

UCB-4 0.9613 0.9059 0.9790 

UCB-5 0.8901 0.8904 0.9058 

UCB-6 0.9176 0.7931 0.9342 

UCB-7 0.9064 0.7000 0.9067 

UCB-8 0.8843 0.8925 0.9098 

UCB-9 0.9403 0.3397 0.9479 

UCB-10 0.9380 0.9022 0.9472 

UCB-11 0.9336 0.9065 0.9430 

UCB-12 0.9191 0.8286 0.9548 

UCB-13 0.9267 0.7422 0.9224 

UCB-14 0.9137 0.6275 0.9543 

Average 0.9305 0.7801 0.9387 
 

In most cases of the experiments, the SEZ gave 

more details but noisier images; the FET gave 

much more homogeneous images but lost many 

details; on the contrary, our algorithm obtained 

homogeneous thresholded images and preserved 

important intensity levels at the same time. 

However, according to visual observation and 

quantitative evaluations, our method is not 

suitable for thresholding uni-modal distribution. 

For the cases with uni-modal or near uni-modal 

distributions, the SEZ and FET are more suitable 

than our method to threshold the histograms. 

5. CONCLUSIONS 

This paper proposed a novel histogram 

thresholding algorithm which aims to find the 

significant peaks and determine the thresholds 

between every two successive peaks. In order to 

make the algorithm robust to noisy histogram and 

false peaks, we proposed the local least square 

regression (LLSR) scheme to re-estimate each 

bin and select peak candidates simultaneously. 

The proposed method is fully automatic, and 

suitable for thresholding the images with 

significant intensity levels without any prior 

knowledge. The experiments show that our 

method gives the results which are homogeneous 

with appropriate number of thresholds. The 

quantitative index values show that our algorithm 

slightly outperforms the SEZ algorithm [3] and 

FET algorithm [1]. 

In the future, we will try to modify our 

algorithm for more general images. For example, 

develop a strategy for the unimodal histogram 

instead of applying the Otsu’s method [5], or 

determine appropriate thresholds for extremely 

noisy (spiky) histogram. 
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Fig. 10. Thresholding results of the Windows XP desktop images. The 1st row: input gray images, 

from left to right, which are blue hills, water lillies, sunset, winter, respectively. The 2nd row: 

histograms corresponding to the input images. The 3rd row: images thresholded by SEZ [3]. The 4th 

row: images thresholded by FET [1]. The 5th row: images thresholded by the proposed method. 

 

 

 

 



 

 

 

 

 

 

 

 

 
Fig. 11. Thresholding results of the classical test images. The 1st column: original images, from top to 

bottom, which are Lena, House, Peppers, Cameraman, and Sailboat, respectively. The 2nd column: 

histograms corresponding to the input images. The 3rd column: images thresholded by SEZ [3]. The 

4th column: images thresholded by FET [1]. The 5th column: images thresholded by the proposed 

method. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 
Fig. 12. Thresholding results of the UC Berkeley dataset [14]. The 1st column: original images, from 

top to bottom, which are UCB-1, UCB-2, UCB-3, UCB-4, UCB-5, UCB-6, UCB-7, and UCB-8, 

respectively. The 2nd column: histograms corresponding to the input images. The 3rd column: images 

thresholded by SEZ [3]. The 4th column: images thresholded by FET [1]. The 5th column: images 

thresholded by the proposed method. 

 

 

 

 

 



 
Fig. 13. Thresholding results of the UC Berkeley dataset [14]. The 1st column: original images, from 

top to bottom, which are UCB-9, UCB-10, UCB-11, UCB-12, UCB-13, and UCB-14, respectively. 

The 2nd column: histograms corresponding to the input images. The 3rd column: images thresholded 

by SEZ [3]. The 4th column: images thresholded by FET [1]. The 5th column: images thresholded by 

the proposed method. 


