
A Remote Control System for Improving the Mobile
Device Security Based on SE Android

Lun-Ming Tung1, Chung-Huang Yang2
Department of Software Engineering and Management,

National Kaohsiung Normal University
No.116, Heping 1st Rd., Lingya Dist., Kaohsiung City 802, Taiwan (R.O.C.)

1k49918135@gmail.com
2chyang@nknu.edu.tw

Abstract— Mobile devices are becoming more
authoritative and developers of the device are
continuously striving to combine the device
with human life for the enhancement of user
intention. On the other hand, mobile device
system security also needs to upgrade in order
to protect the privacy of users’ private
messages. The purpose of this paper is to use
mobile device permission management
systems to protect user privacy information
from malicious attacks. We introduce the
Android Open Source Project (AOSP),
extensible security framework “SE Android”.
Google and National Security Agency (NSA)
developed it. SE Android provides a security
application that supports Android systems of
permission management. We modify the
application combined with a remote server to
form remote control software that provides
additional support features for Mobile Device
Management (MDM).

Keywords— Mobile Device Management,
Permission Management, SE Linux,
SE Android, Security System

1. INTRODUCTION

With the features of mobile devices becoming
more popular, users usually save private data to
mobile devices. The security of mobile devices
has raised great attention to enterprises and
academia. According to the report from IDC
(International Data Corporation), the global smart
phone shipments totaled 334.4 million units in
2014 mobile devices (e.g. [1]). It represented
288.3 million units in the first quarter that grew
16% and Android smart phone system occupied
78% in 2015. According to market research firm
survey reports pointed out that from 2012 begin
global system mobile Android has been leading
IOS. As of 2015, the report pointed out that
global market share of mobile devices, Android

accounted grew from 31% to 54% and IOS
accounted grew from 10% to 18% since 2012(e.g.
[2]). As the data mentioned above, the mobile
devices become more popular and Android
devices occupied the largest market share.
However, with security concerns, according to
international research and consulting firm (e.g.
[3]), the investigation report indicates that mobile
devices often contain sensitive information and
the user should be protected.
In the past research, which was based on the
solution of application abuse action device
sensitive information, the Gilbert et al. (e.g. [4])
found that the action device of third party
application software (third-party apps) may abuse
privacy information of user or use their
information inadequately. Therefore, to propose
automation security validation system: App
Inspector, the system will do analyses on device
of application and produce reports of potential
security and privacy behavior. And Yang et al.
(e.g. [5]) found that the action device of
malicious software tries to through imitation
provides general application software security to
take with privacy or sensitive message of
behavior (for example: sent newsletter) to escape
application software security analysis. It also can
control malicious behaviour occurred in certain
moments (for example: malicious behaviour only
occurred in night). Due to general analysis in
malicious software of application cannot operate
24 hours. Hence, the research recommends using the
application Context to analyze malicious behavior in
mobile device software. As two previous studies
provided, most of current data, analyze the
behavior of malicious software (applications
using mobile device permission to address
mobile devices privacy data protection.)
However, it needs to be parsed before the users
respond in a timely manner. Although there
already has a high opportunity to identify the
malicious acts by using specific methods, it is not
comprehensive. In the same way, this research

also supports to solve the problem of malicious
software that made by some permission to obtain
user privacy information. This research dismisses
the idea of malicious software analysis and tries
to directly provide users with the tactic of
management. Therefore, the user can control the
individual software of permission or all the
software in action device. This strategy can
ensure the security of user’s privacy information.
Lastly, this research combines remote control and
forms the similar MDM (e.g. [6], [7]) of
management mode to provide data of
management within mobile devices and reference
of protecting important private information for
society.

Based on the reasons mentioned above, we
develop Android device nexus 7. Used by the
United States National Security Council (the
National Security Agency; NSA) of SE on the SE
Linux with Google offering the AOSP Android
open source. This application can operate an
application of “seadmin” and isolated the
permission of the application. And then AppOps
Eclipse can add a key to manage application by
specific permissions on all devices. This function
combines with a modified AndroRAT program to
achieve the effect of remote control. And using
SSL Socket mechanism can improve the safety
connection problem. We can, through the
permission management application, help protect
the user's privacy.

2. LITERATURE REVIEW

This study in order to realize the method which
needs to pick up the SE Android system for
remote access management device, and however
to achieve SE Android is Linux kernel Android
system replacement for the SELinux kernel. By
adding modify SELinux-enabled system
components, the applications can obtain API to
manage devices. The application system must be
used, so TWRP open recovery Mode can install
applications on the device and located in the list
of system/Priv-app. We can use the device when
the system is overloaded and consider the
security of the network. The information using
SSL Socket mechanism makes delivery channel
encryption. As the result indicated, we hope the
remote access management can provide MDM
for developers to use. Thus, this research
describes SELinux, AOSP, SE Android, SSL
Socket, MDM and TWRP.

2.1. SE Linux
SE Linux (e.g. [8], [9], [10]) mainly developed

by the United States National Security Agency
(the National Security Agency; NSA), SE Linux
operating structure as in Fig. 1. It currently
integrates to the core part of the Linux version,
and it provides the function of mandatory access
control (Mandatory Access Control; MAC) to
improve the General Linux which using the
discretionary access control (Discretionary
Access Control; DAC). The DAC access control
sets by the "rwx" decision. Based on it, the
corporate world considers that the most of the
problems came from the file setting, reading,
writing and executing permissions. If the system
administrator has not set the perfect, it will lead
the resource leaked. MAC access control needs to
derive the file thread source (domain) and file
domain and drawn with a policy file than for
permission. In Fig. 2, to take the assumption that
subjects with an object as an application. Their
implementation status of the domain root and
source for ABC and policy define objects that
can be accessed by domain: ABC domain only
xyz. Obtaining object status in DAC mode
applications as root, so that all objects can be
achieved, however MAC application identity
domain defined for root only in the light of policy
made for object a XYZ, others are not made.

Fig. 1 SE Linux system architecture

Fig. 2 Compare MAC and DAC

2.2. Android Open Source Project
AOSP (e.g. [11]) is a Google Android

development and it has a pipeline to upgrade
continually, but it should still judge the
effectiveness of the system according to the
hardware basis. The AOSP, as representatives of
native device with Nexus as a standard point.
Most OEMs (Original Equipment Manufacturer;
OEM) companies through the action of AOSP
developed their own system, such as SONY,
HTC, ASUS and Samsung. And other companies
in order to enhance the effectiveness or safety of
Android system by modifying the AOSP
available to others to download and compile a
ROM on a network. For example: CyanogenMod.

2.3. SE Android
Starting from Android 4.3 currently supports

SE Android (e.g. [12]) system functions. SE
Android is the core system from the original
Linux kernel changes to SELinux core, which
makes the Android system multiple SELinux
security mechanisms such as a mandatory access
mechanism. The biggest feature of SE Android is
that applications can use capacity as user or root
access to the system resources. Via the SELinux

security policy development, we can set a filter
action. If the action cannot go through the filter,
it will be denied access. In Fig. 3, the Android
system architecture diagram (e.g. [11]) in bold to
show what is SE Android modifications, such as
SEAdmin were added in system application and
added support in the Application Settings set SE
Android project. Furthermore, in the API and
also added support for SE Android JNI methods
and instruction, and will modify the SELinux
kernel Linux.

Fig. 3 SE Android system architecture

Table 1 below shows SE Android AOSP

source code as an example to modify the content,
such as in the AOSP/external/directory, added
modify libselinux, libsepol, checkPolicy and
sepolicy four new policies, AOSP/packages/apps
/directory SEAdmin and two Application Settings
to modify, AOSP/bionic/, and AOSP/ List of
bootable/recovery and AOSP/build/ of the three
modifications to the system running the
Foundation, and finally AOSP/frameworks/base/
and AOSP/system/directory of core/and extras/ of
the three modified Android system.

TABLE 1
SE ANDROID MODIFICATION

AOSP directory Modification
external/libselinux Provides device SE Linux

userspace can use resource
library. Details can refer to:
external/libselinux/README.a
ndroid

external/libsepol Provide policy documents,
building use policy for
userspace.

external/checkpolicy Provide policy build tool.
external/sepolicy Provide Policy files for the

Android kernel component
(*.TE), established by the

Android.mk and install to
device the result.

packages/apps/
SEAdmin & Settings

SEAdmin：An Android
application for managing SE
Android system (such as
loading a new Policy files and
manage application
permissions). Just support SE
Android.
Settings：This is application of
setting device, it added
SELinux configuration on the
SE Android device (such as
device encryption).

Bionic Android 'libc' is obtained from
the BSD c standard library. On
SE Android include SELinux
security enhancements.

bootable/recovery Modify the recovery mode of
the content, including recovery
init.rc file in the etc directory.

Build Modify SE Android system’s
OTA update files.

frameworks/base 1. The JNI added support for
SELinux letter shows.
Such as: isSELinuxEnabled
and setFSCreateCon.

2. SELinux Java class and
method definitions.

3. Check the Zygote connection
contexts.

4. Wallpaper services and
package manager to manage
file permissions.

5. Supplement SELinux to
support run time additional
MMAC1 and SE Android
service.

system/core 1. Toolbox adds SELinux
service.(For example:
load_policy, runcon)

2. System initialization adds
SELinux support.

3. Add SELinux AVC function
to access specific object
return information document.

system/extras SELinux support ext4 file
system format.

2.4. SE Android Outside of Literature

2.4.1. SSL Socket
SSLSocket is Socket extensions. With the

basis on the socket and adds a layer of security
protection, we provide a higher level of security,
including authentication, data encryption and
integrity verification. The authentication is by
using digital certificating issuance and using.

1 Middleware MAC to make SE Android system can be simple
updates to comply with policies of the MAC mechanism,
simplifying the policy syntax (*.TE) complied with policy syntax

Encryption prevents the data in the message
transfer process being monitored as a result of the
loss, even though third parties listening to
messages passed. However, without the correct
key, it is still unable to get the right message
integrity validation to prevent the message from
being modified in transit.

2.4.2. TWRP OpenRecovery
TWRP is a custom recovery mod and open

source projects can refer to the Web site for
details: https://twrp.me/FAQ/. Initially, it
developed by four people, and then via a pattern
similar to the developer forums, debugs, update.
Many people have expressed their views evolved.
Custom recovery mode allows developers to
install custom applications; you can even install
the complete ROM update or modify the
operating system Android devices.

2.4.3. Mobile Device Management
Mobile device management (MDM) is in the

administrative contents of the company and it can
achieve the functions of development, protection,
monitoring, integration and management of
mobile devices. For instance, smart phones, tablet
computers and laptops. MDM's intention was to
improve the internal security of mobile devices,
while protecting the corporate network security.

3. SYSTEM ARCHITECTURE AND
DEVELOPMENT

3.1. System Architecture
The system consists of applications Client-side

which is installed on the mobile device and
servers which can remotely control your
computer, as shown in Figure 4. Client-side notes
on setting permissions for mobile device
management and connection. The user can realize
the part of device on each of the permissions
required by the application. Also, the user can
manage the requirements of the specific
application permissions or other model to
manage all the application-specific permission
name permissions. The user can set the
connecting information in Server to achieve the
functions of the remote control. The remote
control in Server-side interface provides four
operations and it illustrates four pictures
respectively. The first one "information control
interface" it can display information on mobile
devices such as: version Wifi status, network

status, 3G/4g system and battery status, and also
can send warning messages to the device and
vibration. The second "obtain address control
interface" which can be used by device's GPS
chip or network installation location and use
simple maps for display. The third "make
directory control interface" it can obtain a mobile
device's file system directory structure and
download files on the device. The final
"application access control interface" it is a
particular permission which can remotely manage
mobile devices, so all applications on the device
could not be taken to ensure the privacy of data
leakage. In the past, research suggests that mobile
devices malicious acts of third party applications
may access the user's private data (e.g. [13]), and
however, applications need to access the data on
the devices. The user must request permission,
and therefore this system using administrative
rights to privacy information protection on the
device. The system can ensure that it is restricting
the permissions required by the application and
could not be used.

Fig. 4 Architecture of remote permission system

3.2. System Development
As shown in table 2, the system consists of

cross-platform programming language Java
design and third party open source remote control
software for Android AndroRAT changes. Due to
it is developed by Java, so as long as the server
platform supporting installation of Java
computing environment can be run. Client is in
Eclipse using Java on Android development tool
(ADT) and Google Android APIs developed by.
SSLSocket and API with AppOpsManager is
most important.

First AppOpsManager contains all of the
Android device access2 control methods, since
AppOpsManager only support SE Android
system environment and only provides system

2 Permissions instructions can refer to the following Web site:
http://developer.android.com/reference/android/Manifest.permissio
n.html

procedures should be used. The system must run
on the Android 4.3 future releases and use of
third-party open source backup restore recovery
system software TWRP. The client package to
support Recovery OTA Update Mode file format
(*.zip) to install the application to the system
directory. In order to run without modifying the
original system TWRP, this study used fastboot
command allows TWRP mirror SDK Toolkit
document which can be used by the external open
storage area on the appliance. However the above
process must be unlocked Bootloader, so it is
restrictions on this research.

The second important reason in SSLSocket
API is that it is for original remote control
application open source code in transfer message
about security. It will originally only using
General transmission agreement Socket modified
for additional Shang SSl security agreement of
SSlSocket. Also, it will make this research in
transfer message must contain a key certification.
It can recognize Client and Server end of identity
to reach prevention network transmission may
occur of intermediaries attack, as Fig5. In
addition, the key can then be used by Ubuntu
System preload tool: Keytool length defaults to
1024-bit keys, if you want to change the key
length can be set by means of directives.

TABLE 2
SYSTEM DEVELOPMENT AND TESTING

ENVIRONMENT

Server system
environment

Windows and Ubuntu and other
operating system that supports Java

environment.
Development

tool
Java SE Development Kit(JDK)8

Eclipse LUNA
Google Android APIs

Android Developer Tools
Program languages Java

C languages
Test environment ASUS Nexus 7 (Android 4.4.4)

ASUS Nexus 7 II (Android 5.1.1)
LG Nexus5 (Android 5.1.1)

Execution
environment

Support Android version after 4.3
system and Bootloader unlocked

devices.

Fig. 5 SSL Socket authentication architecture

(1) SSL client-side supports SSL version,
encryption algorithms and other information send
SSL server.

(2) SSL server determines the version of SSL
and encryption suite and then reply messages to
the SSL client-side.

(3) SSL Server using their certificate
information to make their public key to sending
the SSL client-side.

(4) SSL server sends an initial complete
message notification SSL client-side version and
encryption Suite consultations have been
completed and started a key exchange.

(5) When the SSL client-side verify the SSL
server certificate is legitimate, the system will
use the server's certificate of public key
encryption in SSL client randomly generated
Premaster Secret (this is a symmetric encryption
key in a 46-byte random number), and the
message will be sent to the SSL server.

(6) SSL client-side sends a notification of
subsequent transmission will negotiate the SSL
server key and encrypt the encryption suite.

(7) SSL client calculates Hash values for the
interactive handshake message, using agreed key
and encryption algorithm, Hash value, and sends
the ‘Finished’ message to the SSL server. SSL
server uses the same method to calculate the
interactions of handshake message's Hash value,
and compare with the finished decryption of
messages. If they are the same, the proof key and
encryption suite negotiation will be successful.

(8) SSL server sends a notification of
subsequent transmission will negotiate the SSL
client key and encrypt the encryption suite.

(9) SSL calculates the Hash value of
handshake message and uses agreed key and
encryption suite to cope with Hash values. It will
send the ‘Finished’ message to SSL client. SSL
client use the same method to calculate Hash
values for interactive handshake messages, and

compare with the Finished decryption of
messages. If they are same, MAC authentication
will be successful. The proof key and encryption
suite negotiation also will be successful. After
SSL client receives the SSL server message, the
decryption will be successful, and you will be
regarded as the owner of the digital certificate
SSL server. The SSL server authentication
succeeds. Because this is the only way of SSL
server private key to be decrypted from the Client
Key Exchange message. Premaster Secret, thus
indirectly achieving the SSL client authentication
to SSL servers.

4. SYSTEM TESTING AND RESULTS

As the system with a simple GUI and simple
method of operation developed by this study, it
can provide quick management permissions for
device applications in APP Client. It also can be
done on the Server side of remote online
monitoring and management information and
permissions on the device. When users on the
Android device finish installing the APP OTA,
they can begin using this system. The process
refers to fig. 6. In addition, because Android 6.0
has been released on October 5 to Nexus 5, 6, 7,
9, and Player equipment updates and new rights
management features in the application of the
system. As shown in table 3, the difference
between this study and the new Android system
settings application and research contributions.

TABLE 3

DIFFERENCE OF RESEARCH AND
ANDROID M’S PERMISSION APPLICATION.
Feature Android M’s

application
Research

Permission
management

for APP

Yes Yes

Permission
management
for all APPs

No Yes

Mobile Device
Management

No Yes
Part support:
such as find
device, send

warning messages
and get devices
information etc.

Remote
permission

management

No Yes

Fig. 6 System flow chart

Fig. 7 Interface of single application permission

When APP starts executing, the execution
screen will appear, as shown in Fig. 6. At this
point the user can slide the permissions page, and
select the drawn category, which provide
LOCATION, PERSONAL, MESSAGING,
MEDIA and DEVICE. The user can select one of
the applications to manage the permissions as
shown in Fig. 7.

Fig. 8 Single application permission management
interface

If users want to switch modes, you can click
on the main picture MENU key on the right as
shown in Fig. 8, the main option for both
PermmissionManager and RemoteSet.

Fig. 9 Permissions management for all APPs and
remote connection set.

When the user selects "PermissionManager"
option, you can enter a screen to manage all
applications. When a user selects "RemoteSet"
option, it can be set with the remote server's
online IP and Port as shown in Fig. 9. When the
online success you can remotely manage mobile
devices, start with Server-side image.

Fig. 10 Remote Server select connection device.

When users finish online setting on the App
side, you can see the Server side of online device,
as well as the basic information as shown in Fig.
10. This time clicking the device icon into the
management of the information screen and
managing screen will contain the Home,
Permission Manager, Map and the File tree. Then
each of the following screens introducing as
follows.

Fig. 11 Device management screen

First, when you enter the device management
screen, you will see the Home screen as shown in
Fig. 11, where the device appears details such as
the Android system information, network
information, and equipment information. Here
can send warning messages to the device
remotely, as well as a shock when the appliance
is lost can be found device to make warning
message.

Fig. 12 Application access management screen

Second, the screen Permission Manager shows
43 mobile device application permissions. They
are displayed as shown in Fig. 12. And provide
managers with online all application-specific
permissions on the device control. However, this
system only provides permission for the main
rights management for all applications on the
device. Because the Server-side of the system
can be connected to multiple devices and
applications on the device will be unknown. They
actually are for a single application of rights
management difficulties and might cause
managers to control permissions. Hence the
system does not implement this feature on the
Server side.

Fig. 13 Application access management screen

The third and fourth screens extend by the
original picture in AndroRAT, which as shown in
Figure 13. Both functions are described as below,
the Map get device address information made by
network or GPS, and the picture appears to the
left of the map to facilitate managers' monitoring
control devices. File tree can get an online
installation files directory, and download the file
specified to set the path of the address. In other
words, it enters on the lower right of the screen
text input box the path address and based on the
Manager of the system to protect internal data
control devices are not being maliciously
modified and designed to increase operational
safety.

5. CONCLUSIONS

There are two contributions in this study. First
and foremost with mobile device management
(MDM) based control Google Android API:
AppOpsManager. The permissions provided by
the project, the development of a remote
monitoring and management system, which may
limit a third party application. It might have on
private data on the device theft or improper use.
Second, by modifying the AndroRAT source
code, the system can transfer the message
protocol and so that it can ensure the safety
message to improve the operational security of
mobile devices. At present, the system has been
applied in the United States National Security
Agency (NSA) recommendations and
development of a SE Android operating system.
The existing system is mainly controlled by
remote access to spindle development. Compared
to the mobile device management system on the
market, this is a new feature, but for complete
protection, monitoring and integration,
improvement is still needed. This research
towards protection of leakage of private data and
ensure that it will not be lost on the device in the
future.

ACKNOWLEDGMENT

This work was supported in part by the
National Science Council of Taiwan (NSC 102-
2221-E-017-003-MY3).

REFERENCES

[1] IDC. (Aug 2015) Smartphone OS Market
Share, 2015 Q2. [Online]. Available:
http://www.idc.com/prodserv/smartphone-
os-market-share.jsp

[2] GlobalWebIndex. (Jun 2015) Android
mobile now has huge lead over iOS.
[Online]. Available:
http://www.globalwebindex.net/blog/androi
d-mobile-now-has-huge-lead-over-ios

[3] Gartner. (February 2015) Mobile Device
Security: A Comparison of Platforms.
[Online]. Available:
https://www.gartner.com/doc/2988420

[4] P. Gilbert, B. G. Chun, L. P. Cox, and J.
Jung, “Automated Security Validation of
Mobile Apps at App Markets,” MobiSys, pp
21-26, 2011.

[5] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie,
and W. Enck, “AppContext: Differentiating
Malicious and Benign Mobile App
Behaviors Using Context,” Technical
Research: Security and Privacy(1:3), pp.
303-313, 2015.

[6] K. Rhee, W. Jeon, and D. Won, “Security
Requirements of a Mobile Device
Management System,” International Journal
of Security and Its Applications(6:2), pp.
353-358, 2012.

[7] L. Liu, R. Moulic, and D. Shea, “Cloud
Service Portal for Mobile Device
Management,” in e-Business Engineering
(ICEBE), 2010 IEEE 7th International
Conference on, pp. 474-478, 2010.

[8] S. Vermeulen, SELinux System
Administration, Packt, Mumbai, 2013.

[9] R. Haines, The SELinux Notebook(4th
Edition), 2014.

[10] National Security Agency. (Jan 2009)
SELinux Frequently Asked Questions
(FAQ). [Online]. Available:
https://www.nsa.gov/research/selinux/faqs.s
html

[11] k. Yaghmour, Embedded Android, O’Reilly
Media, Sebastopol, 2013.

[12] S. Smalley, and R. Craig, “ Security
Enhanced (SE) Android: Bringing Flexible
MAC to Android,” Trusted Systems
Research, pp. 20-38, 2013.

[13] M. Backes, S. Bugiel, S. Gerling, and P. von
Styp-Rekowsky, “Android Security
Framework: extensible multi-layered access
control on Android,” In Proceedings of
ACSAC, pp. 46-55, 2014.

[14] E. Bacis, S. Mutti, and S. Paraboschi,
“AppPolicyModules: Mandatory Access
Control for Third-Party Apps,” In
Proceedings of the 10th ACM Symposium
on Information, Computer and
Communications Security, pp. 309-320,
2015.

[15] C. Sanders, A. Shah, and S. Zhang,
“Comprehensive Analysis of the Android
Google Play’s Auto-update Policy,”
Springer International Publishing, pp. 365-
377, 2015.

[16] S. Poeplau, Y. Fratantonio, A. Bianchi, C.
Kruegel, and G. Vigna, “Execute This!
Analyzing Unsafe and Malicious Dynamic
Code Loading in Android Applications,” in
Proceedings of the 20th Annual Network &
Distributed System Security Symposium
(NDSS), pp. 23-26, 2014.

[17] S. Bugiel, S. Heuser, and A. R. Sadegh,
“Flexible and fine-grained mandatory access
control on android for diverse security and
privacy policies,” 22nd USENIX Security
Symposium, pp. 131-146, 2013.

[18] A. Shabtai, Y. Fledel, and Y. Elovici,
“Securing Android-Powered Mobile
Devices Using SELinux,” IEEE Security &
Privacy (8:3), pp. 36-44, 2010.

[19] J. J. Drake, Android Hacker’s Handbook,
Sons, Indiana, 2014.

[20] MediaWiki. (March 2015) NB
SEforAndroid 1. [Online]. Available:
http://selinuxproject.org/page/NB_SEforAn
droid_1

