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Abstract— In our recent works, we have analyzed the
convergence properties and the objective functions of
the multiplicative noise and additive noise injection-
based algorithms respectively. In this paper, we gener-
alize our work to gradient systems with multiplicative
and additive noise injection algorithm. Besides, we an-
alyze the effect of the noise on the learning algorithms
completely. It is found that learning with the addi-
tive noise can improve the generalization ability of a
neural network, while learning with the multiplicative
noise is not. We also found that if F (x) satisfies the
Lipschitz condition, under mild conditions on the step
size, with the probability one the weight vector con-
verges to a local minimum of the objective function.

Keywords— additive noise, multiplicative noise,
Langevin noise, weight noise injection, convergence

1. INTRODUCE

Research on the effect of noise on neural networks
has been conducted for almost two decades. Some
researchers investigated the effect of noise on mul-
tilayer perceptrons (MLP) [5, 9, 3, 4, 21], recurrent
neural networks (RNN) [16, 19] and associative net-
works [10, 17]. Their primary focus was on the ef-
fect of noise on the performance of a neural network
and how a neural network can be designed to alle-
viate such effect. Some researchers analyzed the ef-
fects of additive input noise (AIN) [6, 18, 22, 23],
additive weight noise (AWN) [8] and chaotic noise
(CN) [1, 2] on back-propagation learning. Their pri-
mary focus was on the objective functions and the
convergence analyses of these noise injection-based

learning algorithms.

In recent years, the effects of injecting addi-
tive weight noise and multiplicative weight noise
(MWN) on the RBF and MLP learning have been in-
vestigated [14, 15, 12, 13, 7]. By deriving the objec-
tive functions for the RBF learning algorithm with
injecting AWN or MWN, it is found that injecting
AWN or MWN during RBF learning cannot improve
the generalization ability of an RBF [14, 7]. Similar-
ly, by deriving the objective functions for the MLP
learning algorithm with injecting AWN or MWN, it
is found that injecting AWN can improve the gen-
eralization ability of an MLP but injecting MWN
during MLP learning might not [15, 13, 7]. These
results clarify a common missconception that inject-
ing noise during learning must be able to improve
the generalization ability of a neural network.

In our previous work, we have been focus on the
objective function and convergence behaviours of
the AWN and MWN noise respectively. In this pa-
per, we would like to investigate AWN and MWN
simultaneously. We consider a general model for
learning algorithms that are developed based on gra-
dient descent. The weight vector is corrupted with
AWN and MWN simultaneously. The gradient vec-
tor is corrupted with non-zero mean Langevin noise.

We denote that x(t) ∈ Rn are training inputs of
an unknown system and F (x) ∈ R is the objective
function. In the next section, the model of learning
is introduced. The objective function is derived Sec-
tion 3. With this objective function, the convergence
analysis is presented in Section 3. Finally. Section 4
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gives the conclusion of the paper.

2. MODEL

Let x(t) ∈ Rn and F (x) ∈ R is a bounded scalar
function of x. Besides, it is assumed that F (x) is
differentiable up to third order. The gradient system
with forgetting is defined as follows :

x(t+ 1)

= x(t)

−µt
(
∂F (x(t))

∂x
+ λx + (αe + bL(t))

)
.

(1)

where α > 0 and µt > 0, µt → 0 is the step size at
the tth step and

∂F (x(t))

∂x
=
∂F (x)

∂x

∣∣∣∣
x=x(t)

.

With multiplicative and additive noise, the vector
x(t) in (1) is replaced by x̃(t), where

x̃(t) = x(t) + bA(t) + bM (t)⊗ x(t). (2)

In (1) and (2), bL(t),bA(t),bM (t) ∈ Rn is a Gaus-
sian random vector with mean 0 and covariance ma-
trix SLIn×n, SAIn×n, SMIn×n respectively. ⊗ is
the elementwise multiplication operator, i.e.

bA(t) = (bA1(t), · · · , bAn(t))T

bM (t)⊗ x(t) = (bM1(t)x1(t), · · · , bMn(t)xn(t))T

bL(t) = (bL1(t), · · · , bLn(t))T

The model (1) is given as follows :

x(t+ 1)

= x(t)

−µt
(
∂F (x̃(t))

∂x
+ λx̃(t) + (αe + bL(t))

)
.

(3)

Here, we assume that E[bLi(t)] = 0 for al-
l i = 1, · · · , n and t ≥ 0. E[b2Li(t)] equal-
s to SL and E[bLi(t)bLj(t)] equals zero if i 6= j.
E[bLi(t1)bLi(t2)] = 0 if t1 6= t2. These conditions
applies to bA(t) and bM (t) as well.

In the rest of the paper, we make the following
assumptions on the function F (·) and the noise.

• F (x) satisfies the Lipschitz condition. There
exists a constant K such that

|F (x)− F (x′)| ≤ K‖x− x′‖2 (4)

for all x and x′.

• SA, SM and SL are small.

3. EFFECT OF NOISE

3.1. Objective Function

Given x(t), we get the mean update of (3) that

E[x(t+ 1)|x(t)]

= x(t)

−µtE
[
∂F (x̃(t))

∂x
+ λx̃(t)

∣∣∣∣x(t) + (αe + bL(t))

]
.

(5)

In (5), the expectation is taken over the probability
space of x̃(t). Since E[bL(t)] = 0, E[bA(t)] =
0, E[bM (t)] = 0, E[α] = α. Equation (5) can be
rewritten as follows :

E[x(t+ 1)|x(t)]

= x(t)− µt
(
E

[
∂F (x̃)

∂x

∣∣∣∣x(t)

]
+ λx(t) + αe

)
.

(6)

Next, we let V⊗(x) be a scalar function such that

E[x(t+ 1)|x(t)] = x(t)− µt
∂V⊗(x(t))

∂x
. (7)

It can be shown the follow theorem.

Theorem 1 For a gradient system defined as (1)
and x(t) is corrupted by multiplicative and additive
noise as stated in (2),

E[F (x̃)|x] = F (x) +
SA
2

∂2F (x)

∂xj∂xj
x2
j

+
SM
2

n∑
j=1

∂2F (x)

∂xj∂xj
x2
j (8)
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and

V⊗(x) = F (x) +
SA
2

n∑
j=1

∂2F (x)

∂xj∂xj

+
SM
2

n∑
j=1

∂2F (x)

∂x2
j

x2
j

+
λ

2
‖x‖22 + α

n∑
j=1

xj

−SM
∫

x⊗ diag {H(x)} · dx. (9)

where
∫

is the line integral, H(x) is the Hessian ma-
trix of F (x), i.e. H(x) = ∇∇xF (x) and

diag {H(x)} =

(
∂2F (x)

∂x2
1

,
∂2F (x)

∂x2
2

, · · · , ∂
2F (x)

∂x2
n

)T
.

Proof: Consider (6) and let ∂F (x)
∂xi

be the ith element

of ∂F (x)
∂x .

∂F (x̃)

∂xi

=
∂F (x)

∂xi
+

n∑
j=1

∂2F (x)

∂xj∂xi
(bAj + bMjxj)

+
1

2

n∑
k=1

n∑
j=1

∂3F (x)

∂xk∂xj∂xi
bAkbAj

+
1

2

n∑
k=1

n∑
j=1

∂3F (x)

∂xk∂xj∂xi
bAkbMjxj

+
1

2

n∑
k=1

n∑
j=1

∂3F (x)

∂xk∂xj∂xi
bAjbMkxk

+
1

2

n∑
k=1

n∑
j=1

∂3F (x)

∂xk∂xj∂xi
bMkbMjxkxj .

(10)

Therefore,

E

[
∂F (x̃)

∂xi

∣∣∣∣x] =
∂F (x)

∂xi

+
SA
2

n∑
j=1

∂3F (x)

∂xj∂xj∂xi

+
SM
2

n∑
j=1

∂3F (x)

∂xj∂xj∂xi
x2
j .

(11)

On the other hand,

F (x̃) = F (x) +

n∑
i=1

∂F (x)

∂xi
(bAi + bMixi)

+
1

2

n∑
j=1

n∑
i=1

∂2F (x)

∂xj∂xi
bAkbAj

+
1

2

n∑
j=1

n∑
i=1

∂2F (x)

∂xj∂xi
bAkbMjxj

+
1

2

n∑
j=1

n∑
i=1

∂2F (x)

∂xj∂xi
bAjbMkxk

+
1

2

n∑
j=1

n∑
i=1

∂2F (x)

∂xj∂xi
bMkbMjxkxj).

(12)

Thus,

E[F (x̃)|x] = F (x) +
SA
2

n∑
j=1

∂2F (x)

∂xj∂xj

+
SM
2

n∑
j=1

∂2F (x)

∂xj∂xj
x2
j , (13)

and

∂

∂xi
E[F (x̃)|x] =

∂F (x)

∂xi
+
SA
2

n∑
j=1

∂3F (x)

∂xi∂xj∂xj

+
SM
2

n∑
j=1

∂3F (x)

∂xi∂xj∂xj
x2
j

+SM
∂2F (x)

∂xi∂xi
xi.

(14)

By the fact that

∂3F (x)

∂xj∂xj∂xi
=

∂3F (x)

∂xi∂xj∂xj
(15)

for F (x) is triple differentiable. Compare (11) and
(14), we get that

E

[
∂F (x̃)

∂xi

∣∣∣∣x] =
∂

∂xi
E[F (x̃)|x]− SM

∂2F (x)

∂xi∂xi
xi.

(16)
Further by (6) and (7), we get that

∂V⊗(x)

∂xi
=

∂

∂xi
E[F (x̃)|x]−SM

∂2F (x)

∂xi∂xi
+λxi(t)+α.

(17)
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V⊗(x) = E[F (x̃)|x]

−SM
∫

x⊗ diag {H(x)} · dx

+
λ

2
‖x‖22 + α

n∑
j=1

xj . (18)

In other word,

V⊗(x) = F (x) +
SA
2

n∑
j=1

∂2F (x)

∂xj∂xj

+
SM
2

n∑
j=1

∂2F (x)

∂x2
j

x2
j

+
λ

2
‖x‖22 + α

n∑
j=1

xj

−SM
∫

x⊗ diag {H(x)} · dx.

(19)

Then, the proof is completed. Q.E.D.

3.2. Convergence

The effect of the first four terms are to bring x
closer to the zero vector while the last term is to push
it away from the zero vector. Therefore, the exis-
tence of multiplicative and additive noise in a gradi-
ent system would lead to both regularization effect
and de-regularization effect.

Now, we proceed to the convergence analysis. The
proof is conducted by the following steps. First, we
show that E[‖x(t)‖2] is bounded for all t ≥ 0 and
limt→∞ ‖x(t)‖2 exists. It implies that for sufficient
large t, the elements in x(t) must be bounded. Then
apply these two results to show the convergence of
the system (3).

Consider (3), let

η = (1− µtλ(1− SM ))x(t)− µt
∂F (x̃(t))

∂x
we get that

E[‖x(t+ 1)‖22|x(t)]

= E

[∥∥∥∥(1− µtλ)x(t)− µt
∂F (x̃(t))

∂x

∥∥∥∥2

2

∣∣∣∣x(t)

]
+µ2

t

(
λ2(SA + SM‖x(t)‖22) + α2 + nSL

)
,

≤ E
[
‖η‖22 |x(t)

]
+ µ2

t

(
λ2SA + α2 + nSL

)
.

(20)

By Jensen inequality [20], we get that

E[‖x(t+ 1)‖2|x(t)] ≤
(
E[‖x(t+ 1)‖22|x(t)]

)1/2
.

(21)
Therefore, by (20) and (21), we get that

E[‖x(t+ 1)‖2|x(t)]

≤ E [‖η‖2 |x(t)] + µt
√
λ2SA + α+ nSL

≤ (1− µtλ(1− SM ))‖x(t)‖2

+µtE

[∥∥∥∥∂F (x̃(t))

∂x

∥∥∥∥
2

∣∣∣∣x(t)

]
+µt

√
λ2SA + α+ nSL.

(22)

The last inequality is due to Triangle inequality.
Note that

F (x + ∆x)− F (x)

∆xi
≤ |F (x + ∆x)− F (x)|

|∆xi|
,

where ∆x = (x1, · · · , xi−1, xi +
δxi, xi+1, · · · , xn)T . Recall that F (x) satisfies
the Lipschitz condition (4). By the Lipschitz
condition, we can get that

E

[∥∥∥∥∂F (x̃(t))

∂x

∥∥∥∥
2

∣∣∣∣x(t)

]

=

√(
∂F (x̃(t))

∂x1

)2

+ · · ·+
(
∂F (x̃(t))

∂xn

)2

≤
√
nK.

As a result, we can get by (22) that

E[‖x(t+ 1)‖2|x(t)] ≤ (1− µtγ)‖x(t)‖2 + µtκ1,
(23)

where

γ = λ(1− SM ),

κ1 =
√
λ2SA + α+ nSL +

√
nK.

Hence,

E[‖x(t+1)‖2] ≤ (1−µtγ)E[‖x(t)‖2]+µtκ1. (24)

Lemma 1 If 0 < µtγ < 1 for all t ≥ 0, E[‖x(t)‖2]
is bounded.
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Proof: Let κ2 = κ1/γ, we get the update of (24)

E[‖x(t+ 1)‖2] ≤ (1− µtγ)E[‖x(t)‖2] + µtγκ2.

Thus,

E[‖x(t+ 1)‖2]− κ2

≤ (1− µtγ)(E[‖x(t)‖2]− κ2)

≤
t∏

τ=0

(1− µτγ)(E[‖x(t)‖2]− κ2).

(25)

Since E[‖x(0)‖2] is bounded. 0 < µtγ < 1 im-
plies that

0 <
t∏

τ=0

(1− µτγ) < 1.

Therefore,

E[‖x(t+ 1)‖2]− κ2 < E[‖x(0)‖2]− κ2,

E[‖x(t+ 1)‖2] < E[‖x(0)‖2]. (26)

E[‖x(t)‖2] is bounded for all t ≥ 0. The proof is
completed. Q.E.D.

Lemma 2 With probability one, limt→∞ ‖x(t)‖2
exists.

Proof: We can define a random variable as follows :

β(t) = ‖x(t)‖2
∞∏
τ=t

(1− µtγ)

+κ1

∞∑
τ1=t

µτ1

∞∏
τ2=τ1+1

(1− µτ2γ).(27)

By Lemma 1, E[‖x(t)‖2] is bounded. It is clear that
β(t) ≥ 0. Now, we show that β(t) is supermartin-
gale. The expectation of β(t+ 1) ≥ 0 is given by

E[β(t+ 1)|β(t)]

= E[‖x(t+ 1)‖2|β(t)]
∞∏

τ=t+1

(1− µtγ)

+κ1

∞∑
τ1=t+1

µτ1

∞∏
τ2=τ1+1

(1− µτ2γ). (28)

By (23), we can get that

E[β(t+ 1)|β(t)]

≤ (1− µtγ)‖x(t)‖2
∞∏

τ=t+1

(1− µtγ)

+µtκ1

∞∏
τ=t+1

(1− µtγ)

+κ1

∞∑
τ1=t+1

µτ1

∞∏
τ2=τ1+1

(1− µτ2γ)

= ‖x(t)‖2
∞∏

τ=t+1

(1− µtγ)

+κ1

∞∑
τ1=t

µτ1

∞∏
τ2=τ1+1

(1− µτ2γ).

(29)

Clearly, the RHS of (29) is equal to β(t). Thus,
E[β(t+ 1)|β(t)] ≤ β(t) and

E[β(t+ 1)] ≤ E[β(t) ≤ · · · ≤ E[β(0)]. (30)

Next, we are going to show that E[β(0)] is finite.
As ‖mathbfx(0)‖ is finite, what we will show is
that the second term in the RHS of (29) is finite. Let

ξT = exp

{
−γ

T∑
τ2=0

µτ2

}
.

By the inequality that

ln(1− µtγ) ≤ −µtγ,
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T−1∑
τ1=0

µτ1

T∏
τ2=τ1+1

(1− µτ2γ)

≤
T−1∑
τ1=0

µτ1 exp

{
−γ

T∑
τ2=τ1+1

µτ2

}

= ξT

T−1∑
τ1=0

µτ1 exp

{
−γ

τ1∑
τ2=0

µτ2

}
= ξTµ0 exp{γµ0}

+ ξT

T−1∑
τ1=1

µτ1 exp {γµτ1} exp

{
γ

τ1−1∑
τ2=0

µτ2

}
≤ ξTµ0 exp{γµ0}

+ ξT exp
{
γmax

t
µt

} T−1∑
τ1=1

µτ1 exp

{
γ

τ1−1∑
τ2=0

µτ2

}
(31)

and

T−1∑
τ1=1

µτ1 exp

{
γ

τ1−1∑
τ2=0

µτ2

}

≤
∫ T̄−µT

µ0

exp(γx)dx

<

∫ T̄

0
exp(γx)dx.

(32)

where T̄ =
∑T

τ=0 µτ . From (31) and (32),

T−1∑
τ1=0

µτ1

T∏
τ2=τ1+1

(1− µτ2γ)

< ξTµ0 exp γµ0

+
exp{γmaxt µt}

γ

{
1− exp(−γT̄ )

}
.

(33)

Since limT→∞ ξT = 0,

lim
T→∞

T−1∑
τ1=0

µτ1

T∏
τ2=τ1+1

(1− µτ2γ)

≤ exp{γmaxt µt}
γ

. (34)

Finally, from (27) and the fact that ‖x(0)‖2 is fi-
nite, we get

E[β(0)] ≤ κ1
exp{γmaxt µt}

γ

and thus

E[β(t+ 1)] ≤ E[β(t) ≤ · · · ≤ E[β(0)] <∞.
(35)

By Martingale Convergence Theorem,
limt→∞ β(t) exists with probability one. By
(34), it is clear that the value of the second term in
(27) is bounded and positive. On the other hand, the
factor

∏∞
τ=t(1 − µtγ) associated with ‖x‖2 in (27)

is increasing with respect to t. Its value is positive
and bounded by one. Therefore, we can conclude
that limt→∞ ‖x‖2 exists with probability one. The
proof is completed.

As limt→∞ ‖x‖2 exists, there exists a bounded re-
gion Ω and t∗ such that x(t) ∈ Ω for all t ≥ t∗. Now,
we can state the convergence of (3) in the following
lemma and theorem.

Lemma 3 For all t ≥ t∗, there exists a bounded
region Ω and t∗ such that x(t) ∈ Ω; V⊗(x(t)) ≤
∞; and the eigenvalues of the Hessian matrix
∇∇xV⊗(x(t)) are all finite.

Theorem 2 (Convergence) For the learning algo-
rithm defined as (1) and x̃(t) is defined as (2), if
µt → 0,

∑
t µt = ∞ and

∑
t µ

2
t < ∞,then with

probability one limt→∞∇xV⊗(x(t)) = 0, where
∇xV⊗(x(t)) is given by (19).

Proof: Now, we expand V⊗(x(t + 1)) around x(t)
and get that

V⊗(x(t+ 1)) = V⊗(x(t)) +∇xV⊗(x(t))δx(t)

+
1

2
δx(t)T∇∇xV⊗(x(t))δx(t),

(36)

where δx(t) = x(t+1)−x(t). By Lemma 3, we can
let κ3 be the maximum eigenvalue of∇∇xV⊗(x(t))
for t ≥ t∗. By (36), we can get the inequality that

V⊗(x(t+ 1)) ≤ V⊗(x(t)) +∇xV⊗(x(t))δx(t)

+
κ3

2
‖δx(t)‖22. (37)
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By Lemma 3, it is clear that ‖δx(t)‖22 is bounded for
all t ≥ t∗. We let this bound be κ4. As a result, we
can get that

lim
t→∞

E[V⊗(x(t))|x(t∗)]

≤ V⊗(x(t∗))−
∑
t≥t∗

µtE[‖∇xV⊗(x(t))‖22 |x(t∗)]

+
κ3κ4

2

∑
t≥t∗

µ2
t . (38)

It is clear from Lemma 3 that
limt→∞E[V⊗(x(t))|x(t∗)] and V⊗(x(t∗)) are all fi-
nite. Further from the condition that

∑
t≥t∗ µ

2
t <∞,

we can get that∑
t≥t∗

µtE
[
‖∇xV⊗(x(t))‖22 |x(t∗)

]
<∞.

By the condition that
∑

t≥t∗ µt = ∞, we can prove
by contradiction that

lim
t→∞

E
[
‖∇xV⊗(x(t))‖22 |x(t∗)

]
= 0

In the other word,

lim
t→∞
∇xV⊗(x(t)) = 0.

The proof is completed.

4. CONCLUSION

In this paper, we have presented the objective
functions and convergence analyses of multiplicative
and additive noise on learning. The gradient vector is
corrupted with non-zero mean Langevin noise. The
energy functions of the gradient system with noise
has been released. We also show that with proba-
bility one the weight vector converge to a local mini-
mum of the objective function. Our result imply that,
with the multiplicative and additive noise on learn-
ing, two opposite effects exists, moving towards and
away. The result shows that inject AWN and MWN
simultaneously might not be improve generalization.
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